Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ \tau $ be a faithful normal semifinite trace on a von Neumann algebra. We establish the Leibniz criterion for sign-alternating series of $ \tau $-measurable operators. An analogue of the criterion of “sandwich” convergence of series for $ \tau $-measurable operators is obtained. We prove a refinement of this criterion for the $ \tau $-compact case. In terms of measure convergence topology, the criterion of $ \tau $-compactness of an arbitrary $ \tau $-measurable operator is established. We also give a sufficient condition of 1) $ \tau $-compactness of the commutator of a $ \tau $-measurable operator and a projection; 2) convergence of $ \tau$-measurable operator and projection commutator sequences to the zero operator in the measure $ \tau $.
Keywords: Hilbert space, von Neumann algebra, normal trace, measurable operator, topology of convergence in measure, series of operators, $ \tau $-compact operator.
@article{IVM_2020_5_a8,
     author = {A. M. Bikchentaev},
     title = {Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von {Neumann} algebra},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--93},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 89
EP  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/
LA  - ru
ID  - IVM_2020_5_a8
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 89-93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/
%G ru
%F IVM_2020_5_a8
A. M. Bikchentaev. Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/

[1] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[2] Takesaki M., Theory of operator algebras, v. II, Encyclopaedia of mathematical sciences, 125, Springer, Berlin, 2003 | MR | Zbl

[3] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[4] Bikchentaev A. M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana, II”, Matem. zametki, 82:5 (2007), 783–786 | DOI | MR | Zbl

[5] Bikchentaev A. M., Sukochev F. A., “When weak and local measure convergence implies norm convergence”, J. Math. Anal. Appl., 473:2 (2019), 1414–1431 | DOI | MR | Zbl

[6] Stinespring W. F., “Integration theorems for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90:1 (1959), 15–56 | DOI | MR | Zbl

[7] Ciach L. J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra”, Colloq. Math., 55:1 (1988), 109–121 | DOI | MR | Zbl

[8] Bikchentaev A. M., “On $\tau$-essentially invertibility of $\tau$-measurable operators”, Internat. J. Theor. Phys., 58:12 (2019) | DOI | MR

[9] Sonis M. G., “Ob odnom klasse operatorov v algebrakh fon Neimana s meroi Sigala na proektorakh”, Matem. sb., 84:3 (1971), 353–368 | MR | Zbl

[10] Stroh A., West P. G., “$\tau$-compact operators affiliated to a semifinite von Neumann algebra”, Proc. Roy. Irish Acad. Sect. A, 93:1 (1993), 73–86 | MR | Zbl

[11] Bikchentaev A. M., “The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra”, Lobachevskii J. Math., 14 (2004), 17–24 http://ljm.ksu.ru | MR | Zbl

[12] Bikchentaev A. M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Tr. MIAN, 255, 2006, 41–54 | Zbl

[13] Chilin V. I., Muratov M. A., “Comparison of topologies on $\ast$-algebras of locally measurable operators”, Positivity, 17:1 (2013), 111–132 | DOI | MR | Zbl

[14] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965