Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a8, author = {A. M. Bikchentaev}, title = {Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von {Neumann} algebra}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--93}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/} }
TY - JOUR AU - A. M. Bikchentaev TI - Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 89 EP - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/ LA - ru ID - IVM_2020_5_a8 ER -
%0 Journal Article %A A. M. Bikchentaev %T Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 89-93 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/ %G ru %F IVM_2020_5_a8
A. M. Bikchentaev. Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/
[1] Segal I. E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl
[2] Takesaki M., Theory of operator algebras, v. II, Encyclopaedia of mathematical sciences, 125, Springer, Berlin, 2003 | MR | Zbl
[3] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[4] Bikchentaev A. M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana, II”, Matem. zametki, 82:5 (2007), 783–786 | DOI | MR | Zbl
[5] Bikchentaev A. M., Sukochev F. A., “When weak and local measure convergence implies norm convergence”, J. Math. Anal. Appl., 473:2 (2019), 1414–1431 | DOI | MR | Zbl
[6] Stinespring W. F., “Integration theorems for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90:1 (1959), 15–56 | DOI | MR | Zbl
[7] Ciach L. J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra”, Colloq. Math., 55:1 (1988), 109–121 | DOI | MR | Zbl
[8] Bikchentaev A. M., “On $\tau$-essentially invertibility of $\tau$-measurable operators”, Internat. J. Theor. Phys., 58:12 (2019) | DOI | MR
[9] Sonis M. G., “Ob odnom klasse operatorov v algebrakh fon Neimana s meroi Sigala na proektorakh”, Matem. sb., 84:3 (1971), 353–368 | MR | Zbl
[10] Stroh A., West P. G., “$\tau$-compact operators affiliated to a semifinite von Neumann algebra”, Proc. Roy. Irish Acad. Sect. A, 93:1 (1993), 73–86 | MR | Zbl
[11] Bikchentaev A. M., “The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra”, Lobachevskii J. Math., 14 (2004), 17–24 http://ljm.ksu.ru | MR | Zbl
[12] Bikchentaev A. M., “Lokalnaya skhodimost po mere na polukonechnykh algebrakh fon Neimana”, Tr. MIAN, 255, 2006, 41–54 | Zbl
[13] Chilin V. I., Muratov M. A., “Comparison of topologies on $\ast$-algebras of locally measurable operators”, Positivity, 17:1 (2013), 111–132 | DOI | MR | Zbl
[14] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965