Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a8, author = {A. M. Bikchentaev}, title = {Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von {Neumann} algebra}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--93}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/} }
TY - JOUR AU - A. M. Bikchentaev TI - Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 89 EP - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/ LA - ru ID - IVM_2020_5_a8 ER -
%0 Journal Article %A A. M. Bikchentaev %T Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 89-93 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/ %G ru %F IVM_2020_5_a8
A. M. Bikchentaev. Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 89-93. http://geodesic.mathdoc.fr/item/IVM_2020_5_a8/