Refined orthotropic plate motion equations for acoustasticity problem statement
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 62-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formulation of the acoustoelasticity problem is given on the basis of refined motion equations of orthotropic plate. These equations are constructed in the first approximation by reducing the three-dimensional equations of the theory of elasticity to the two-dimensional equations of the theory of plates by using for approximating the transverse tangential stresses and the transverse reduction stress of trigonometric basic functions in the thickness direction. At that, at the points of the boundary (front) surfaces, the static boundary conditions of the problem for tangential stresses are exactly satisfied and approximately for transverse normal stress. Accounting for internal energy dissipation in the plate material is based on the Thompson-Kelvin-Voigt hysteresis model. In case of formulating problems on dynamic processes of plate deformation in vacuum, the equations are divided into two separate systems of equations. The first of these systems describes non-classical shear-free, longitudinal-transverse forms of movement, accompanied by a distortion of the flat form of cross sections, and the second system describes transverse bending-shear forms of movement. The latter are practically equivalent in quality and content to the analogous equations of the well-known variants of refined theories, but, unlike them, with a decrease in the relative thickness parameter, they lead to solutions according to the classical theory of plates. The motion of the surrounding the plate acoustic media are described by the generalized Helmholtz wave equations, constructed with account of energy dissipation by introducing into consideration the complex sound velocity according to Skuchik.
Keywords: orthotropic plate, refined theory, trigonometric function, energy dissipation, Thompson–Kelvin–Voigt model, transverse bending-shear form, acoustoelasticity problem, generalized wave equation.
Mots-clés : longitudinal-transverse form
@article{IVM_2020_5_a5,
     author = {V. N. Paimushin and T. V. Polyakova and N. V. Polyakova and R. K. Gazizullin},
     title = {Refined orthotropic plate motion equations for acoustasticity problem statement},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--73},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - T. V. Polyakova
AU  - N. V. Polyakova
AU  - R. K. Gazizullin
TI  - Refined orthotropic plate motion equations for acoustasticity problem statement
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 62
EP  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/
LA  - ru
ID  - IVM_2020_5_a5
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A T. V. Polyakova
%A N. V. Polyakova
%A R. K. Gazizullin
%T Refined orthotropic plate motion equations for acoustasticity problem statement
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 62-73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/
%G ru
%F IVM_2020_5_a5
V. N. Paimushin; T. V. Polyakova; N. V. Polyakova; R. K. Gazizullin. Refined orthotropic plate motion equations for acoustasticity problem statement. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 62-73. http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/

[1] Paimushin V. N., Gazizullin R. K., “Static and Monoharmonic Acoustic Impact on a Laminated Plate”, Mech. of Composit. Materials, 53:3 (2017), 283–304 | DOI

[2] Paimushin V. N., Tarlakovskii D. V., Gazizullin R. K., Lukashevich A., “Investigation of different versions of formulation of the problem of soundproofing of rectangular plates surrounded with acoustic media”, J. Math. Sci., 220:1 (2017), 59–81 | DOI | MR

[3] Paimushin V. N., Gazizullin R. K., Sharapov A. A., “Numerical and Experimental Study of the Sound-Insulating Properties of a Deformable Plate Located between Two Chambers”, Proc. Engineering, 106 (2015), 336–349 | DOI

[4] Ambartsumyan S. A., Teoriya anizotropnykh plastin: Prochnost, ustoichivost i kolebaniya, Nauka, M., 1987 | MR

[5] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[6] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Nauk. dumka, Kiev, 1973

[7] Rikards R. B., Teters G. A., Ustoichivost obolochek iz kompozitnykh materialov, Zinatne, Riga, 1974

[8] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982

[9] Gorynin G. L., Nemirovskii Yu. V., Prostranstvennye zadachi izgiba i krucheniya sloistykh konstruktsii. Metod asimptoticheskogo rasschepleniya, Nauka, Novosibirsk, 2004

[10] Grigolyuk E. I., Selezov I. T., Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek, Itogi nauki i tekhniki. Ser. Mekhan. tverdykh deformiruemykh tel, 5, VINITI, M., 1973

[11] Altenbakh Kh., “Osnovnye napravleniya teorii mnogosloinykh tonkostennykh konstruktsii”, Mekhan. kompozit. materialov, 34:6 (1998), 333–348

[12] Paimushin V. N., “Exact and approximate analytical solutions to a problem on plane modes of free oscillations of a rectangular orthotropic plate with free edges, with the use of triginometric basis functions”, Mechanics of Composite Materials, 41:4 (2005), 313–332 | DOI | MR

[13] Paimushin V. N., “Tochnye analiticheskie resheniya zadachi o ploskikh formakh svobodnykh kolebanii pryamougolnoi plastiny so svobodnymi krayami”, Izv. vuzov. Matem., 8 (2006), 54–62 | MR | Zbl

[14] Paimushin V. N., Polyakova T. V., “Tochnye analiticheskie resheniya trekhmernoi zadachi o svobodnykh kolebaniyakh ortotropnogo pryamougolnogo parallelepipeda so svobodnymi granyami”, Mekhan. kompozit. materialov i konstruktsii, 12:3 (2006), 317–336

[15] Paimushin V. N., Polyakova T. V., “Tochnye i priblizhennye uravneniya statiki i dinamiki sterzhnya-polosy i obobschennye klassicheskie modeli”, Mekhan. kompozit. materialov i konstruktsii, 14:1 (2008), 126–156

[16] Paimushin V. N., Polyakova T. V., “The small free oscillations of a strip”, J. Appl. Math. and Mechan., 75:1 (2011), 49–55 | DOI | MR | Zbl

[17] Ivanov V. A., Paimushin V. N., Polyakova T. V., “Issledovanie napryazhenno-deformirovannogo sostoyaniya sterzhnya-polosy na osnove uravnenii ploskoi zadachi teorii uprugosti i novogo varianta utochnennoi teorii sterzhnei”, Mekhan. kompozit. materialov i konstruktsii, 14:3 (2008), 373–388

[18] Skuchik E., Osnovy akustiki, v. 1, Mir, M., 1976