Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a5, author = {V. N. Paimushin and T. V. Polyakova and N. V. Polyakova and R. K. Gazizullin}, title = {Refined orthotropic plate motion equations for acoustasticity problem statement}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {62--73}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/} }
TY - JOUR AU - V. N. Paimushin AU - T. V. Polyakova AU - N. V. Polyakova AU - R. K. Gazizullin TI - Refined orthotropic plate motion equations for acoustasticity problem statement JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 62 EP - 73 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/ LA - ru ID - IVM_2020_5_a5 ER -
%0 Journal Article %A V. N. Paimushin %A T. V. Polyakova %A N. V. Polyakova %A R. K. Gazizullin %T Refined orthotropic plate motion equations for acoustasticity problem statement %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 62-73 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/ %G ru %F IVM_2020_5_a5
V. N. Paimushin; T. V. Polyakova; N. V. Polyakova; R. K. Gazizullin. Refined orthotropic plate motion equations for acoustasticity problem statement. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 62-73. http://geodesic.mathdoc.fr/item/IVM_2020_5_a5/
[1] Paimushin V. N., Gazizullin R. K., “Static and Monoharmonic Acoustic Impact on a Laminated Plate”, Mech. of Composit. Materials, 53:3 (2017), 283–304 | DOI
[2] Paimushin V. N., Tarlakovskii D. V., Gazizullin R. K., Lukashevich A., “Investigation of different versions of formulation of the problem of soundproofing of rectangular plates surrounded with acoustic media”, J. Math. Sci., 220:1 (2017), 59–81 | DOI | MR
[3] Paimushin V. N., Gazizullin R. K., Sharapov A. A., “Numerical and Experimental Study of the Sound-Insulating Properties of a Deformable Plate Located between Two Chambers”, Proc. Engineering, 106 (2015), 336–349 | DOI
[4] Ambartsumyan S. A., Teoriya anizotropnykh plastin: Prochnost, ustoichivost i kolebaniya, Nauka, M., 1987 | MR
[5] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980
[6] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Nauk. dumka, Kiev, 1973
[7] Rikards R. B., Teters G. A., Ustoichivost obolochek iz kompozitnykh materialov, Zinatne, Riga, 1974
[8] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982
[9] Gorynin G. L., Nemirovskii Yu. V., Prostranstvennye zadachi izgiba i krucheniya sloistykh konstruktsii. Metod asimptoticheskogo rasschepleniya, Nauka, Novosibirsk, 2004
[10] Grigolyuk E. I., Selezov I. T., Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek, Itogi nauki i tekhniki. Ser. Mekhan. tverdykh deformiruemykh tel, 5, VINITI, M., 1973
[11] Altenbakh Kh., “Osnovnye napravleniya teorii mnogosloinykh tonkostennykh konstruktsii”, Mekhan. kompozit. materialov, 34:6 (1998), 333–348
[12] Paimushin V. N., “Exact and approximate analytical solutions to a problem on plane modes of free oscillations of a rectangular orthotropic plate with free edges, with the use of triginometric basis functions”, Mechanics of Composite Materials, 41:4 (2005), 313–332 | DOI | MR
[13] Paimushin V. N., “Tochnye analiticheskie resheniya zadachi o ploskikh formakh svobodnykh kolebanii pryamougolnoi plastiny so svobodnymi krayami”, Izv. vuzov. Matem., 8 (2006), 54–62 | MR | Zbl
[14] Paimushin V. N., Polyakova T. V., “Tochnye analiticheskie resheniya trekhmernoi zadachi o svobodnykh kolebaniyakh ortotropnogo pryamougolnogo parallelepipeda so svobodnymi granyami”, Mekhan. kompozit. materialov i konstruktsii, 12:3 (2006), 317–336
[15] Paimushin V. N., Polyakova T. V., “Tochnye i priblizhennye uravneniya statiki i dinamiki sterzhnya-polosy i obobschennye klassicheskie modeli”, Mekhan. kompozit. materialov i konstruktsii, 14:1 (2008), 126–156
[16] Paimushin V. N., Polyakova T. V., “The small free oscillations of a strip”, J. Appl. Math. and Mechan., 75:1 (2011), 49–55 | DOI | MR | Zbl
[17] Ivanov V. A., Paimushin V. N., Polyakova T. V., “Issledovanie napryazhenno-deformirovannogo sostoyaniya sterzhnya-polosy na osnove uravnenii ploskoi zadachi teorii uprugosti i novogo varianta utochnennoi teorii sterzhnei”, Mekhan. kompozit. materialov i konstruktsii, 14:3 (2008), 373–388
[18] Skuchik E., Osnovy akustiki, v. 1, Mir, M., 1976