Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a2, author = {S. I. Dudov and E. S. Polovinkin and V. V. Abramova}, title = {Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {22--38}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a2/} }
TY - JOUR AU - S. I. Dudov AU - E. S. Polovinkin AU - V. V. Abramova TI - Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 22 EP - 38 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a2/ LA - ru ID - IVM_2020_5_a2 ER -
%0 Journal Article %A S. I. Dudov %A E. S. Polovinkin %A V. V. Abramova %T Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 22-38 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_5_a2/ %G ru %F IVM_2020_5_a2
S. I. Dudov; E. S. Polovinkin; V. V. Abramova. Properties of the distance function to strongly and weakly convex sets in a nonsymmetrical space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 22-38. http://geodesic.mathdoc.fr/item/IVM_2020_5_a2/
[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[2] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR
[3] Dunham Ch.B., “Asymmetric norms and linear approximation”, Congr. Numer., 69 (1989), 113–120 | MR | Zbl
[4] Romaguera S., Schellekens M., “Quasi-metric properties of complexity spaces”, Topology Appl., 98:1 (1999), 311–322 | DOI | MR | Zbl
[5] De Blasi F. S., Myjak J., “On a generalized best approximation problem”, J. Approx.Theory, 94:1 (1998), 54–72 | DOI | MR | Zbl
[6] Alegre C., “Continuous operators on asymmetric normed spaces”, Acta Math. Hung., 122:4 (2009), 357–372 | DOI | MR | Zbl
[7] Cobzas S., Functional analysis in asymmetric normed spaces, Birkhauser, Basel, 2013 | MR | Zbl
[8] Alimov A. R., Approksimativno-geometricheskie svoistva mnozhestv v normirovannykh i nesimmetrichno normirovannykh prostranstvakh, Diss. na soiskanie uchenoi stepeni doktora fiz.-matem. nauk, Moskovsk. gos. un-ta, 2014
[9] Alimov A. R., “Vypuklost ogranichennykh chebyshevskikh mnozhestv v konechnomernykh prostranstvakh s nesimmetrichnoi normoi”, Izv. Saratovsk. un-ta, Novaya seriya. Ser. Matem. Mekhan. Informatika, 16:2 (2016), 133–137 | MR | Zbl
[10] Ivanov G. E., Lopushanski M. S., “Approksimativnye svoistva slabo vypuklykh mnozhestvo v prostranstvakh s nesimmetrichnoi polunormoi”, Tr. MFTI, 4:4 (2012), 94–104
[11] Ivanov G. E., Lopushanski M. S., “Separation theorems for nonconvex sets in space with nonsymmetric seminorm”, J. Math. Inequalities and Appl., 20:3 (2017), 737–754 | MR | Zbl
[12] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007
[13] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | DOI | MR | Zbl
[14] Vasilev F. P., Metody optimizatsii, v. I, MTsNMO, M., 2011
[15] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990
[16] Vial J.-P., “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[17] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii: teoriya i prilozheniya, Fizmatlit, M., 2006
[18] Stechkin S. B., Efimov N. V., “Opornye svoistva mnozhestv v banakhovykh prostranstvakh i chebyshevskie mnozhestva”, DAN SSSR, 127:2 (1959), 254–257 | Zbl
[19] Golubev M. O., “Svyaz silno vypuklykh mnozhestv s silnoi vypuklostyu funktsii rasstoyaniya i slaboi vognutostyu funktsii antirasstoyaniya”, Sovr. probl. teorii funktsii i ikh prilozheniya, Mater. 17-i mezhdunarodn. Saratovsk. zimn. shk., Izd-vo Nauchn. kn., Saratov, 2014, 76–78