About the spectral properties of one three-partial model operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of the essential spectrum of one of the three particle model operator $H$. We prove the existence of a negative eigenvalues of the operator H and obtaine the estimate for a number of negative eigenvalues of the operator $H$.
Keywords: essential spectrum, discrete spectrum, lower bound of the essential spectrum, three particle discrete operator.
@article{IVM_2020_5_a0,
     author = {G. P. Arzikulov and Yu. Kh. Eshkabilov},
     title = {About the spectral properties of one three-partial model operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/}
}
TY  - JOUR
AU  - G. P. Arzikulov
AU  - Yu. Kh. Eshkabilov
TI  - About the spectral properties of one three-partial model operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/
LA  - ru
ID  - IVM_2020_5_a0
ER  - 
%0 Journal Article
%A G. P. Arzikulov
%A Yu. Kh. Eshkabilov
%T About the spectral properties of one three-partial model operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/
%G ru
%F IVM_2020_5_a0
G. P. Arzikulov; Yu. Kh. Eshkabilov. About the spectral properties of one three-partial model operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/

[1] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, TMF, 149:2 (2006), 228–243 | DOI | MR | Zbl

[2] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial integral operators and Integro-Differential Equations, New York, 2000 | MR | Zbl

[3] Eshkabilov Yu. Kh., Chastichno integralnye operatory tipa Fredgolma, LAP, Germany, Saarbrucken, 2013

[4] Albeverio S., Lakaev S. N., Muminov Z. I., “On the Number of Eigenvalues of a Model Operator Associated to a System of Three-Particles on Lattices”, Russ. J. of Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl

[5] Rasulov T. Kh., “Asimptotika diskretnogo spektra odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, TMF, 163:1 (2010), 34–44 | DOI | MR | Zbl

[6] Arzikulov G. P., Eshkabilov Yu. Kh., “O suschestvennom i diskretnom spektrakh odnogo chastichno integralnogo operatora tipa Fredgolma”, Matem. tr., 17:2 (2014), 23–40 | Zbl

[7] Kucharov R. R., Eshkabilov Yu. Kh., “O konechnosti otritsatelnykh sobstvennykh znachenii chastichno integralnogo operatora”, Matem. tr., 17:1 (2014), 128–144 | Zbl

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funkts. analiz, Mir, M., 1977

[9] Eshkabilov Yu. Kh., “Suschestvennyi i diskretnyi spektry chastichno integralnykh operatorov”, Matem. tr., 11:2 (2008), 187–203 | MR | Zbl

[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982

[11] Trikomi F. Dzh., Integralnye uravneniya, In. lit., M., 1960

[12] Eshkabilov Yu. Kh., “O beskonechnosti diskretnogo spektra operatorov v modeli Fridrikhsa”, Matem. tr., 14:1 (2011), 195–211 | Zbl