About the spectral properties of one three-partial model operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the structure of the essential spectrum of one of the three particle model operator $H$. We prove the existence of a negative eigenvalues of the operator H and obtaine the estimate for a number of negative eigenvalues of the operator $H$.
Keywords:
essential spectrum, discrete spectrum, lower bound of the essential spectrum, three particle discrete operator.
@article{IVM_2020_5_a0,
author = {G. P. Arzikulov and Yu. Kh. Eshkabilov},
title = {About the spectral properties of one three-partial model operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--10},
publisher = {mathdoc},
number = {5},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/}
}
TY - JOUR AU - G. P. Arzikulov AU - Yu. Kh. Eshkabilov TI - About the spectral properties of one three-partial model operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 3 EP - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/ LA - ru ID - IVM_2020_5_a0 ER -
G. P. Arzikulov; Yu. Kh. Eshkabilov. About the spectral properties of one three-partial model operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/