Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_5_a0, author = {G. P. Arzikulov and Yu. Kh. Eshkabilov}, title = {About the spectral properties of one three-partial model operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--10}, publisher = {mathdoc}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/} }
TY - JOUR AU - G. P. Arzikulov AU - Yu. Kh. Eshkabilov TI - About the spectral properties of one three-partial model operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 3 EP - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/ LA - ru ID - IVM_2020_5_a0 ER -
G. P. Arzikulov; Yu. Kh. Eshkabilov. About the spectral properties of one three-partial model operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/
[1] Eshkabilov Yu. Kh., “Ob odnom diskretnom “trekhchastichnom” operatore Shredingera v modeli Khabbarda”, TMF, 149:2 (2006), 228–243 | DOI | MR | Zbl
[2] Appell J. M., Kalitvin A. S., Zabrejko P. P., Partial integral operators and Integro-Differential Equations, New York, 2000 | MR | Zbl
[3] Eshkabilov Yu. Kh., Chastichno integralnye operatory tipa Fredgolma, LAP, Germany, Saarbrucken, 2013
[4] Albeverio S., Lakaev S. N., Muminov Z. I., “On the Number of Eigenvalues of a Model Operator Associated to a System of Three-Particles on Lattices”, Russ. J. of Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl
[5] Rasulov T. Kh., “Asimptotika diskretnogo spektra odnogo modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, TMF, 163:1 (2010), 34–44 | DOI | MR | Zbl
[6] Arzikulov G. P., Eshkabilov Yu. Kh., “O suschestvennom i diskretnom spektrakh odnogo chastichno integralnogo operatora tipa Fredgolma”, Matem. tr., 17:2 (2014), 23–40 | Zbl
[7] Kucharov R. R., Eshkabilov Yu. Kh., “O konechnosti otritsatelnykh sobstvennykh znachenii chastichno integralnogo operatora”, Matem. tr., 17:1 (2014), 128–144 | Zbl
[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funkts. analiz, Mir, M., 1977
[9] Eshkabilov Yu. Kh., “Suschestvennyi i diskretnyi spektry chastichno integralnykh operatorov”, Matem. tr., 11:2 (2008), 187–203 | MR | Zbl
[10] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982
[11] Trikomi F. Dzh., Integralnye uravneniya, In. lit., M., 1960
[12] Eshkabilov Yu. Kh., “O beskonechnosti diskretnogo spektra operatorov v modeli Fridrikhsa”, Matem. tr., 14:1 (2011), 195–211 | Zbl