About the spectral properties of one three-partial model operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the structure of the essential spectrum of one of the three particle model operator $H$. We prove the existence of a negative eigenvalues of the operator H and obtaine the estimate for a number of negative eigenvalues of the operator $H$.
Keywords: essential spectrum, discrete spectrum, lower bound of the essential spectrum, three particle discrete operator.
@article{IVM_2020_5_a0,
     author = {G. P. Arzikulov and Yu. Kh. Eshkabilov},
     title = {About the spectral properties of one three-partial model operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/}
}
TY  - JOUR
AU  - G. P. Arzikulov
AU  - Yu. Kh. Eshkabilov
TI  - About the spectral properties of one three-partial model operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 3
EP  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/
LA  - ru
ID  - IVM_2020_5_a0
ER  - 
%0 Journal Article
%A G. P. Arzikulov
%A Yu. Kh. Eshkabilov
%T About the spectral properties of one three-partial model operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 3-10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/
%G ru
%F IVM_2020_5_a0
G. P. Arzikulov; Yu. Kh. Eshkabilov. About the spectral properties of one three-partial model operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2020), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2020_5_a0/