The approximation of functions by partial sums of the Fourier series in polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 64-73

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary continuous function $f(t)$ on the segment $[-1, 1]$ we construct discrete sums by Fourier $S_{n,N}(f,t)$ on system polynomials forming an orthonormals system on any finite non-uniform set $T_N = \{t_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with weight $\Delta{t_j} = t_{j+1} - t_j.$ Approximation properties of the constructing partial sums $S_{n,N}(f,t)$ order $n\leq{N-1}$ are investiga-ted. Namely a two-sided pointwise estimate is obtained for the Lebesgue function $L_{n,N}(t)$ discrete Fourier sums for $n=O(\delta_N^{-1/5}), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$. Coherently also is investigated the question of the convergence of $S_{n,N}(f,t)$ to $f(t).$ In particular, we obtaine the estimation deflection partial sums $S_{n,N}(f,t)$ from $f(t)$ for $n=O(\delta_N^{-1/5})$ which is depended on $n$ and position of a point $t$ on the $[-1, 1].$
Mots-clés : polynomial, Lebesgue function.
Keywords: orthogonal system, asymptotic formula, discrete Fourier sums
@article{IVM_2020_4_a5,
     author = {A. A. Nurmagomedov},
     title = {The approximation of functions by partial sums of the {Fourier} series in polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--73},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - The approximation of functions by partial sums of the Fourier series in polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 64
EP  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/
LA  - ru
ID  - IVM_2020_4_a5
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T The approximation of functions by partial sums of the Fourier series in polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 64-73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/
%G ru
%F IVM_2020_4_a5
A. A. Nurmagomedov. The approximation of functions by partial sums of the Fourier series in polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 64-73. http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/