The approximation of functions by partial sums of the Fourier series in polynomials
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 64-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary continuous function $f(t)$ on the segment $[-1, 1]$ we construct discrete sums by Fourier $S_{n,N}(f,t)$ on system polynomials forming an orthonormals system on any finite non-uniform set $T_N = \{t_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with weight $\Delta{t_j} = t_{j+1} - t_j.$ Approximation properties of the constructing partial sums $S_{n,N}(f,t)$ order $n\leq{N-1}$ are investiga-ted. Namely a two-sided pointwise estimate is obtained for the Lebesgue function $L_{n,N}(t)$ discrete Fourier sums for $n=O(\delta_N^{-1/5}), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$. Coherently also is investigated the question of the convergence of $S_{n,N}(f,t)$ to $f(t).$ In particular, we obtaine the estimation deflection partial sums $S_{n,N}(f,t)$ from $f(t)$ for $n=O(\delta_N^{-1/5})$ which is depended on $n$ and position of a point $t$ on the $[-1, 1].$
Mots-clés : polynomial, Lebesgue function.
Keywords: orthogonal system, asymptotic formula, discrete Fourier sums
@article{IVM_2020_4_a5,
     author = {A. A. Nurmagomedov},
     title = {The approximation of functions by partial sums of the {Fourier} series in polynomials},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--73},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/}
}
TY  - JOUR
AU  - A. A. Nurmagomedov
TI  - The approximation of functions by partial sums of the Fourier series in polynomials
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 64
EP  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/
LA  - ru
ID  - IVM_2020_4_a5
ER  - 
%0 Journal Article
%A A. A. Nurmagomedov
%T The approximation of functions by partial sums of the Fourier series in polynomials
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 64-73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/
%G ru
%F IVM_2020_4_a5
A. A. Nurmagomedov. The approximation of functions by partial sums of the Fourier series in polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 64-73. http://geodesic.mathdoc.fr/item/IVM_2020_4_a5/

[1] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[2] Rau H., “Über die Lebesgueschen Konstanten der Reihenentwicklungen nach Jacobischen Polynomen”, J. Math., 161 (1929), 237–254 | MR | Zbl

[3] Gronwall T., “Über die Laplacische Reihe”, Math. Ann., 74 (1913), 213–270 | DOI | MR | Zbl

[4] Agakhanov S.A., Natanson G.I., “Priblizhenie funktsii summami Fure–Yakobi”, DAN SSSR, 166:1 (1966), 9–10 | MR | Zbl

[5] Agakhanov S.A., Natanson G.I., “Funktsiya Lebega summ Fure–Yakobi”, Vestn. Leningradsk. un-ta. Ser. Matem., Mekhan. i astron., 1968, no. 1, 11–23 | MR | Zbl

[6] Sharapudinov I.I., “O skhodimosti metoda naimenshikh kvadratov”, Matem. zametki, 53:3 (1993), 131–143 | MR | Zbl

[7] Nurmagomedov A.A., “Mnogochleny, ortogonalnye na neravnomernykh setkakh”, Izv. Saratovsk. gos. un-ta. Ser. Matem. Mekhan. Informatika, 11:3-2 (2011), 29–42

[8] Nurmagomedov A.A., “Ckhodimost summ Fure po mnogochlenam, ortogonalnym na proizvolnykh setkakh”, Izv. vuzov. Matem., 2012, no. 7, 60–62 | MR | Zbl

[9] Korkmasov F.M., “Approksimativnye svoistva srednikh Valle-Pussena dlya diskretnykh summ Fure–Yakobi”, Sib. matem. zhurn., 45:2 (2004), 334–355 | MR | Zbl

[10] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam. Teoriya i prilozheniya, Dagestansk. nauchn. tsentr RAN, Makhachkala, 2004

[11] Sharapudinov I.I., “Ob ogranichennosti v $C[-1, 1]$ srednikh Valle–Pussena dlya diskretnykh summ Fure–Chebysheva”, Matem. sb., 187:1 (1996), 143–160 | DOI | MR | Zbl

[12] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, In. lit., M., 1963

[13] Badkov V.M., “Otsenki funktsii Lebega i ostatka ryada Fure–Yakobi”, Sib. matem. zhurn., 9:6 (1968), 1263–1283 | MR | Zbl

[14] Badkov V.M., “Dvustoronnie otsenki funktsii Lebega i ostatka ryada Fure po ortogonalnym mnogochlenam”, Approksimatsiya v konkretnykh i abstraktnykh banakhovykh prostranstvakh, UNTs AN SSSR, Sverdlovsk, 1987

[15] Shakirov I.A., “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam Lagranzha”, Izv. vuzov. Matem., 2011, no. 10, 80–88 | Zbl