Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a reduction of the three-dimensional Darboux system for the Christoffel symbols, which describes conjugate curvilinear coordinate systems. The reduction is determined by one additional algebraic condition on the Christoffel symbols. It is shown that the corresponding class of solutions of the Darboux system is parametrized by six functions of one variable (two for each of three independent variables). Explicit formulas for Darboux system solutions are given. For the case when Christoffel symbols are constants, the linear system associated with the Darboux system is studied. In this formulation, this system is reduced to the three-dimensional Goursat problem for a third-order equation with data on the coordinate planes. It is shown that the solution to the Goursat problem allows the separation of variables and is determined by its values on the coordinate lines.
Keywords: three-dimensional Darboux system, integrable systems, three-dimensional Goursat problem, systems of hydrodynamic type equations, Hamiltonian system.
@article{IVM_2020_4_a3,
     author = {R. Ch. Kulaev and A. B. Shabat},
     title = {Darboux system and separation of variables in the {Goursat} problem for a third order equation in $\mathbb {R}^3$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--53},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. B. Shabat
TI  - Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 43
EP  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/
LA  - ru
ID  - IVM_2020_4_a3
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. B. Shabat
%T Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 43-53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/
%G ru
%F IVM_2020_4_a3
R. Ch. Kulaev; A. B. Shabat. Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 43-53. http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/

[1] Tsarev S.P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl

[2] Zakharov V.E., Manakov S.V., “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego prilozh., 19:2 (1985), 11–25 | MR

[3] Zakharov V.E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lame equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[4] Dryuma V.S., “Geometrical properties of the multidimensional nonlinear differential equations and the Finsler metrics of phase spaces of dynamical systems”, Teor. matem. Fizika., 99:2 (1994), 241–249 | MR | Zbl

[5] Bogdanov L.V., Konopelchenko B.G., “Generalized integrable hierarchies and Combescure symmetry transfor-mations”, J. Phys. A: Math. and General., 30:5 (1997), 1591–1603 | DOI | MR | Zbl

[6] Dubrovin B.A., Novikov S.P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok: Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[7] Krichever I.M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | DOI | MR | Zbl

[8] Ferapontov E.V., “Sistemy trekh differentsialnykh uravnenii gidrodinamicheskogo tipa s shestiugolnoi $3$-tkanyu kharakteristik na resheniyakh”, Funkts. analiz i ego prilozh., 23:2 (1989), 79–80 | MR | Zbl

[9] Ferapontov E.V., “Integrirovanie slabo nelineinykh polugamiltonovykh sistem gidrodinamicheskogo tipa metodami teorii tkanei”, Matem. sb., 181:9 (1990), 1220–1235

[10] Pavlov M.V., “Gamiltonov formalizm slabonelineinykh sistem gidrodinamiki”, Teor. i matem. fizika., 73:2 (1987), 316–320 | MR

[11] Kulaev R.Ch., Pogrebkov A.K., Shabat A.B., “Sistema Darbu: liuvilleva reduktsiya i yavnoe reshenie”, Tr. MIAN., 302, 2018, 268–286 | DOI | MR | Zbl

[12] Shabat A.B., “K teorii preobrazovanii Laplasa–Darbu”, Teor. i matem. fizika., 103:1 (1995), 170–175 | MR | Zbl

[13] Kulaev R.Ch., Pogrebkov A.K., Shabat A.B., “Sistema Darbu kak trekhmernyi analog uravneniya Liuvillya”, Izv. vuzov. Matem., 2018, no. 12, 60–69 | MR | Zbl

[14] Zhegalov V.I., Mironov A.I., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Izd-vo Kazansk. matem. o-va, 2001

[15] Mironov A.N., “Zadacha Darbu dlya uravneniya Bianki tretego poryadka”, Matem. zametki, 102:1 (2017), 64–71 | DOI | MR | Zbl

[16] Zhegalov V.I., Utkina E.A., Shakirova I.M., “Ob usloviyakh razreshimosti zadachi Gursa dlya obobschennogo uravneniya Allera”, Izv. vuzov. Matem., 2018, no. 8, 21–26 | Zbl