Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_4_a3, author = {R. Ch. Kulaev and A. B. Shabat}, title = {Darboux system and separation of variables in the {Goursat} problem for a third order equation in $\mathbb {R}^3$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--53}, publisher = {mathdoc}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/} }
TY - JOUR AU - R. Ch. Kulaev AU - A. B. Shabat TI - Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 43 EP - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/ LA - ru ID - IVM_2020_4_a3 ER -
%0 Journal Article %A R. Ch. Kulaev %A A. B. Shabat %T Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$ %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 43-53 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/ %G ru %F IVM_2020_4_a3
R. Ch. Kulaev; A. B. Shabat. Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2020), pp. 43-53. http://geodesic.mathdoc.fr/item/IVM_2020_4_a3/
[1] Tsarev S.P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | MR | Zbl
[2] Zakharov V.E., Manakov S.V., “Postroenie mnogomernykh nelineinykh integriruemykh sistem i ikh reshenii”, Funkts. analiz i ego prilozh., 19:2 (1985), 11–25 | MR
[3] Zakharov V.E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I. Integration of the Lame equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[4] Dryuma V.S., “Geometrical properties of the multidimensional nonlinear differential equations and the Finsler metrics of phase spaces of dynamical systems”, Teor. matem. Fizika., 99:2 (1994), 241–249 | MR | Zbl
[5] Bogdanov L.V., Konopelchenko B.G., “Generalized integrable hierarchies and Combescure symmetry transfor-mations”, J. Phys. A: Math. and General., 30:5 (1997), 1591–1603 | DOI | MR | Zbl
[6] Dubrovin B.A., Novikov S.P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok: Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl
[7] Krichever I.M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | DOI | MR | Zbl
[8] Ferapontov E.V., “Sistemy trekh differentsialnykh uravnenii gidrodinamicheskogo tipa s shestiugolnoi $3$-tkanyu kharakteristik na resheniyakh”, Funkts. analiz i ego prilozh., 23:2 (1989), 79–80 | MR | Zbl
[9] Ferapontov E.V., “Integrirovanie slabo nelineinykh polugamiltonovykh sistem gidrodinamicheskogo tipa metodami teorii tkanei”, Matem. sb., 181:9 (1990), 1220–1235
[10] Pavlov M.V., “Gamiltonov formalizm slabonelineinykh sistem gidrodinamiki”, Teor. i matem. fizika., 73:2 (1987), 316–320 | MR
[11] Kulaev R.Ch., Pogrebkov A.K., Shabat A.B., “Sistema Darbu: liuvilleva reduktsiya i yavnoe reshenie”, Tr. MIAN., 302, 2018, 268–286 | DOI | MR | Zbl
[12] Shabat A.B., “K teorii preobrazovanii Laplasa–Darbu”, Teor. i matem. fizika., 103:1 (1995), 170–175 | MR | Zbl
[13] Kulaev R.Ch., Pogrebkov A.K., Shabat A.B., “Sistema Darbu kak trekhmernyi analog uravneniya Liuvillya”, Izv. vuzov. Matem., 2018, no. 12, 60–69 | MR | Zbl
[14] Zhegalov V.I., Mironov A.I., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Izd-vo Kazansk. matem. o-va, 2001
[15] Mironov A.N., “Zadacha Darbu dlya uravneniya Bianki tretego poryadka”, Matem. zametki, 102:1 (2017), 64–71 | DOI | MR | Zbl
[16] Zhegalov V.I., Utkina E.A., Shakirova I.M., “Ob usloviyakh razreshimosti zadachi Gursa dlya obobschennogo uravneniya Allera”, Izv. vuzov. Matem., 2018, no. 8, 21–26 | Zbl