Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_3_a9, author = {N. Temirgaliyev and Sh. K. Abikenova and Sh. U. Azhgaliev and G. E. Taugynbaeyva}, title = {The {Radon} transform in the scheme {C(N)D-inverstigations} and the {quasi-Monte} {Carlo} theory}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {98--104}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a9/} }
TY - JOUR AU - N. Temirgaliyev AU - Sh. K. Abikenova AU - Sh. U. Azhgaliev AU - G. E. Taugynbaeyva TI - The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 98 EP - 104 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_3_a9/ LA - ru ID - IVM_2020_3_a9 ER -
%0 Journal Article %A N. Temirgaliyev %A Sh. K. Abikenova %A Sh. U. Azhgaliev %A G. E. Taugynbaeyva %T The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 98-104 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_3_a9/ %G ru %F IVM_2020_3_a9
N. Temirgaliyev; Sh. K. Abikenova; Sh. U. Azhgaliev; G. E. Taugynbaeyva. The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 98-104. http://geodesic.mathdoc.fr/item/IVM_2020_3_a9/
[1] Radon J., “Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte uber die Verhandlungen Gesellshaft der Wissenschaften zu Leipzig”, J. Math. Phys., 69 (1917), 262–277 | Zbl
[2] The first 100 years of the Radon transform (Linz, Austria, 27–31 March, 1917) | Zbl
[3] Natterer F., The Mathematics of Computerized Tomography, Soc. for Industrial and Appl. Math., 2001 | MR
[4] Hetzenecker K., Limbeck-Lilienau C., Schweizer D., Laufersweiler B., Innovation durch Grundlagenforschung. Der Beitrag wissenschaftlicher Theorien und Entdeckungen zum gesamtgesellschaftlichen Fortschritt, Begleitheft zur Ausstellung an der Univ. Wien, 2016
[5] Temirgaliev N., Zhubanysheva A.Zh., “Teoriya priblizhenii, Vychislitelnaya matematika i Chislennyi analiz v novoi kontseptsii v svete Kompyuternogo (vychislitelnogo) poperechnika”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhanika, 124:3 (2018), 8–88
[6] Temirgaliev N., Zhubanysheva A.Zh., “Kompyuternyi (vychislitelnyi) poperechnik v kontekste obschei teorii vosstanovleniya”, Izv. vuzov. Matem., 2019, no. 1, 89–97
[7] Temirgaliev N., Zhubanysheva A.Zh., “Poryadkovye otsenki norm proizvodnykh funktsii s nulevymi znacheniyami na lineinykh funktsionalakh i ikh primeneniya”, Izv. vuzov. Matem., 2017, no. 3, 89–95 | MR
[8] Triebel N., Interpolation theory, function spaces, differential operators, North-Holland Pub. Co., Amsterdam–New York, 1978 ; Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[9] Azhgaliev Sh.U., Temirgaliev N., “Ob informativnoi moschnosti lineinykh funktsionalov”, Matem. zam., 73:6 (2003), 803–812 | DOI | MR | Zbl
[10] Temirgaliev N., Sherniyazov K.E., Berikkhanova M.E., “Tochnye poryadki kompyuternykh (vychislitelnykh) poperechnikov v zadachakh vosstanovleniya funktsii i diskretizatsii reshenii uravneniya Kleina–Gordona po koeffitsientam Fure”, Sovremen. probl. matem., 17, 2013, 179–207 | DOI
[11] Zhubanysheva A.Zh., Temirgaliev N., “Informativnaya moschnost trigonometricheskikh koeffitsientov Fure i ikh predelnaya pogreshnost pri diskretizatsii operatora differentsirovaniya na mnogomernykh klassakh Soboleva”, Zhurn. vychisl. matem. i matem. fiziki, 55:9 (2015), 1474–1485 | DOI | MR | Zbl
[12] Temirgaliev N., Abikenova Sh.K., Zhubanysheva A.Zh., Taugynbaeva G.E., “Zadachi diskretizatsii reshenii volnovogo uravneniya, chislennogo differentsirovaniya i vosstanovleniya funktsii v kontekste kompyuternogo (vychislitelnogo) poperechnika”, Izv. vuzov. Matem., 2013, no. 8, 86–93 | Zbl
[13] Korobov N.M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963
[14] Hua Loo Keng, Wang Yuan, Application of number theory of numerical analysis, Springer Verlag, New York, 1981 | MR
[15] Hlawka E., Firneis F., Zinterhof P., Zahlentheoretische Methoden in der numerischen Mathematik, Wien–München–Oldenbourg, 1981 | MR
[16] Bakhvalov N.S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU. Ser., Matem., mekhanika, 1959, no. 4, 3–18
[17] Plaskota L., Wozniakowski H., Monte Carlo and Quasi-Monte Carlo Methods, Springer Sci. Business Media, 2010 | MR
[18] Dick J., Pillichshammer F., Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[19] Voronin S.M., Temirgaliev N., “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Matem. zametki, 46:2 (1989), 34–41 | Zbl
[20] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505
[21] Bailov E.A., Zhubanysheva A.Zh., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya periodicheskikh funktsii mnogikh peremennykh”, Dokl. RAN, 416:2 (2007), 169–173 | MR | Zbl
[22] Zhubanysheva A. Zh., Temirgalieva Zh.N., Temirgaliev N., “Primenenie teorii divizorov k postroeniyu tablits optimalnykh koeffitsientov kvadraturnykh formul”, Zhurn. vychisl. matem. i matem. fiziki, 49:1 (2009), 14–25 | MR | Zbl
[23] Bailov E.A., Sikhov M.B., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya funktsii mnogikh peremennykh”, Zhurn. vychisl. matem. i matem. fiziki, 54:7 (2014), 1059–1077 | DOI | MR | Zbl
[24] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov E, SW i B, Diss. ... kand. fiz.-matem. nauk, KazGU im. al-Farabi, 1998
[25] Temirgaliev N., “Kompyuternyi (vychislitelnyi) poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya (metod kvazi-Monte-Karlo). Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva, 2010, Spets. vypusk, posvyaschennyi nauchnym dostizheniyam matematikov ENU im. L.N. Gumileva