Triple Lie systems associated with $(-1,1)$ algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 80-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a Lie triple system associated with the central isotope of $(-1,1)$-algebra. The associator ideal of $(-1,1)$-algebra is nilpotent if and only if the Lie triple system is nilpotent. The relationship of the constructed Lie triple system with other known Lie triple systems is discussed.
Keywords: central isotope, $(-1,1)$-algebra, Lie triple system.
@article{IVM_2020_3_a6,
     author = {L. R. Borisova and S. V. Pchelintsev},
     title = {Triple {Lie} systems associated with $(-1,1)$ algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--84},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/}
}
TY  - JOUR
AU  - L. R. Borisova
AU  - S. V. Pchelintsev
TI  - Triple Lie systems associated with $(-1,1)$ algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 80
EP  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/
LA  - ru
ID  - IVM_2020_3_a6
ER  - 
%0 Journal Article
%A L. R. Borisova
%A S. V. Pchelintsev
%T Triple Lie systems associated with $(-1,1)$ algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 80-84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/
%G ru
%F IVM_2020_3_a6
L. R. Borisova; S. V. Pchelintsev. Triple Lie systems associated with $(-1,1)$ algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 80-84. http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/