Triple Lie systems associated with $(-1,1)$ algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a Lie triple system associated with the central isotope of $(-1,1)$-algebra. The associator ideal of $(-1,1)$-algebra is nilpotent if and only if the Lie triple system is nilpotent. The relationship of the constructed Lie triple system with other known Lie triple systems is discussed.
Keywords: central isotope, $(-1,1)$-algebra, Lie triple system.
@article{IVM_2020_3_a6,
     author = {L. R. Borisova and S. V. Pchelintsev},
     title = {Triple {Lie} systems associated with $(-1,1)$ algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--84},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/}
}
TY  - JOUR
AU  - L. R. Borisova
AU  - S. V. Pchelintsev
TI  - Triple Lie systems associated with $(-1,1)$ algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 80
EP  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/
LA  - ru
ID  - IVM_2020_3_a6
ER  - 
%0 Journal Article
%A L. R. Borisova
%A S. V. Pchelintsev
%T Triple Lie systems associated with $(-1,1)$ algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 80-84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/
%G ru
%F IVM_2020_3_a6
L. R. Borisova; S. V. Pchelintsev. Triple Lie systems associated with $(-1,1)$ algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 80-84. http://geodesic.mathdoc.fr/item/IVM_2020_3_a6/

[1] Jacobson N., Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., 39, Amer. Math. Soc., 1968 | MR | Zbl

[2] Jacobson N., “Structure of alternative and Jordan bimodules”, Osaka J. Math., 6:1 (1954), 1–71 | MR | Zbl

[3] Kuzmin E.N., “Algebry Maltseva i ikh predstavleniya”, Algebra i Logika, 7:4 (1968), 48–69 | MR | Zbl

[4] Carlsson R., “Malcev-moduln”, J. Reine Angew. Math., 281 (1976), 199–210 | MR | Zbl

[5] Pchelintsev S. V., Shestakov I. P., “Prime $(-1,1)$ and Jordan monsters and superalgebras vector type”, J. Algebra, 423 (2015), 54–-86 | DOI | MR | Zbl

[6] Zhelyabin V.N., Zakharov A.S., “Spetsialnost iordanovykh superalgebr, svyazannykh s algebrami Novikova–Puassona”, Matem. zametki, 97:3 (2015), 359–367 | DOI | MR | Zbl

[7] Zhevlakov K.A., Slinko A.M., Shestakov I.P., Shirshov A.I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[8] Hentzel I. R., “The characterization of $(-1,1)$-rings”, J. Algebra, 30 (1974), 236–258 | DOI | MR | Zbl

[9] Pchelintsev S.V., “Pervichnye algebry i absolyutnye deliteli nulya”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 79–100 | MR | Zbl

[10] Pchelintsev S.V., “Izotopy pervichnykh $(-1,1)$-algebr i iordanovykh algebr”, Algebra i logika, 49:3 (2010), 388–423 | MR | Zbl

[11] McCrimmon K., “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | DOI | MR | Zbl

[12] Pchelintsev S.V., “Izotopy alternativnykh algebr kharakteristiki, otlichnoi ot 3”, Izv. RAN. Ser. matem. (to appear)

[13] Roomeldi R.E., “Tsentry svobodnogo $(-1,1)$-koltsa”, Sib. mat. zhurn., 18:4 (1977), 861–876 | MR | Zbl

[14] Buchnev A.A., Filippov V.T., Shestakov I.P., “Proverka tozhdestv neassotsiativnykh algebr na kompyutere”, Tretii Sib. kongress po prikl. i industr. matem. (INPRIM-98), posvyaschennyi pamyati S. L. Soboleva (1908–1989), Izd-vo in-ta matematiki, Novosibirsk, 1998, 9

[15] Dorofeev G.V., “Primer razreshimogo, no ne nilpotentnogo $(-1,1)$-koltsa”, Algebra i logika, 12:2 (1973), 162–166 | MR | Zbl