On elliptic homogeneous differential operators in grand spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 64-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an application of so called grand Lebesgue and grand Sobolev spaces, intensively studied during last decades, to differential equations in partial derivatives. In the case of unbounded domains such spaces are defined with the use of so called grandizers. Under some natural assumptions on the choice of grandizers, we prove the existence, in some grand Sobolev space, of solution to the equation $P_m(D)u(x)=f(x),$ $x\in \mathbb{R}^n,$ $m$ with the right-hand side in the corresponding grand Lebesgue space, where $P_m(D)$ is an elliptic homogeneous differential operator with constant coefficients of even order $m$. Also, for such polynomials in the general case we improve some known facts for the fundamental solution of the operator $P_m(D)$: we construct it in the closed form lither in terms of spherical hypersingular integrals or in terms of some averages along plane sections of the unit sphere.
Keywords: elliptic homogeneous differential operator, grand Sobolev space, grandizer, fundamental solution, spherical hypersingular integral.
Mots-clés : grand Lebesgue space
@article{IVM_2020_3_a4,
     author = {S. M. Umarkhadzhiev},
     title = {On elliptic homogeneous differential operators in grand spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--73},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a4/}
}
TY  - JOUR
AU  - S. M. Umarkhadzhiev
TI  - On elliptic homogeneous differential operators in grand spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 64
EP  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a4/
LA  - ru
ID  - IVM_2020_3_a4
ER  - 
%0 Journal Article
%A S. M. Umarkhadzhiev
%T On elliptic homogeneous differential operators in grand spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 64-73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a4/
%G ru
%F IVM_2020_3_a4
S. M. Umarkhadzhiev. On elliptic homogeneous differential operators in grand spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 64-73. http://geodesic.mathdoc.fr/item/IVM_2020_3_a4/

[1] Iwaniec T., Sbordone C., “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:3 (1997), 249–258 | DOI | MR | Zbl

[3] Iwaniec T., Sbordone C., “Weak minima of variational integrals”, J. Reine Angew. Math., 454 (1994), 143–161 | MR | Zbl

[4] Fiorenza A., Gupta B., Jain P., “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[5] Kokilashvili V., “Boundedness criteria for singular integrals in weighted Grand Lebesgue spaces”, J. Math. Sci. (N.Y.), 170:1 (2010), 20–33 | DOI | MR | Zbl

[6] Kokilashvili V., Meskhi A., “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl

[7] Meskhi A., “Weighted criteria for the Hardy transform under the $B_p$ condition in grand Lebesgue spaces and some applications”, J. Math. Sci. (N.Y.), 178:6 (2011), 622–636 | DOI | MR | Zbl

[8] Kokilashvili V.M., Meskhi A.N., “Vesovaya ekstrapolyatsiya v prostranstvakh Ivanetsa–Sbordone. Prilozheniya k integralnym operatoram i teorii priblizhenii”, Tr. MIAN, 293, 2016, 167–192 | DOI | Zbl

[9] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral Operators in Non-standard Function Spaces, v. 1, Variable Exponent Lebesgue and Amalgam Spaces, Birkhäuser, 2015, 1–586 | MR

[10] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral Operators in Non-standard Function Spaces, v. 2, Variable exponent Hölder, Morrey–Campanato and grand spaces, Birkhäuser, 2016, 571–1003 | MR | Zbl

[11] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl

[12] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl

[13] Umarkhadzhiev S.M., “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matem., 2014, no. 4, 42–51 | MR

[14] Umarkhadzhiev S.M., “Ogranichennost lineinykh operatorov v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vestn. Akad. nauk Chechenskoi Respubliki, 19:2 (2013), 5–9

[15] Umarkhadzhiev S. M., “One-dimensional and multidimensional Hardy operators in grand Lebesgue spaces”, Azerb. J. Math., 7:2 (2017), 132–152 | MR | Zbl

[16] Samko S. G., Umarkhadzhiev S. M., “Riesz fractional integrals in grand Lebesgue spaces”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl

[17] Umarkhadzhiev S.M., “Integralnye operatory s odnorodnymi yadrami v grand-prostranstvakh Lebega”, Matem. zametki, 102:5 (2017), 775–788 | DOI | MR | Zbl

[18] Samko S. G., Umarkhadzhiev S. M., “On grand Lebesgue spaces on sets of infinite measure”, Math. Nachr., 290:5–6 (2017), 913–919 | DOI | MR | Zbl

[19] Umarkhadzhiev S. M., “The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces”, Operator theory, operator algebras and applications, Birkhäuser/Springer, Basel, 2014, 363–373 | DOI | MR | Zbl

[20] Umarkhadzhiev S.M., “Ogranichennost potentsiala Rissa v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vladikavkazsk. matem. zhurn., 16:2 (2014), 62–68 | MR | Zbl

[21] Umarkhadzhiev S.M., “Opisanie prostranstva rissovykh potentsialov funktsii iz grad-prostranstva Lebega na $\mathbb{R}^n$”, Matem. zametki, 104:3 (2018), 467–480 | DOI | MR | Zbl

[22] Umarkhadzhiev S.M., “Ogranichennost maksimalnogo operatora v grand-prostranstvakh Lebega na $\mathbb{R}^n$”, Izv. vuzov. Sev. Kavkazsk. region., Estestv. nauki, 1 (2016), 35–38

[23] Samko S. G., Hypersingular Integrals and their Applications, Analytical Methods and Special Functions, 5, Taylor Francis, London-New-York, 2002 | MR | Zbl

[24] Trev Zh., Lektsii po lineinym uravneniyam v chastnykh proizvodnykh s postoyannymi koeffitsientami, Mir, M., 1965

[25] Gelfand I.M., Shapiro Z.Ya., “Odnorodnye funktsii i ikh prilozheniya”, UMN, 10:3 (1955), 3–70

[26] Lizorkin P.I., “Obobschennoe liuvilevskoe differentsirovanie i funktsionalnye prostranstva ${L}_p^r({E}_n)$. Teoremy vlozheniya”, Matem. sb., 60:3 (1963), 325–353 | Zbl

[27] Samko S.G., “O prostranstvakh rissovykh potentsialov”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1143–1172 | MR | Zbl

[28] Samko S.G., Umarkhadzhiev S.M., “Opisanie prostranstva rissovykh potentsialov v terminakh starshikh proizvodnykh”, Izv. vuzov. Matem., 1980, no. 11, 79–82 | Zbl

[29] Samko S.G., “Obobschennye rissovye potentsialy i gipersingulyarnye integraly s odnorodnymi kharakteristikami; ikh simvoly i obraschenie”, Tr. Matem. in-ta AN SSSR, 156, 1980, 157–222 | Zbl

[30] Samko S.G., “Singulyarnye integraly po sfere i postroenie kharakteristiki po simvolu”, Izv. vuzov. Matem., 1983, no. 4, 28–42 | Zbl

[31] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986 | MR