A mixed problem for the heat equation with advanced time in boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 29-47
Voir la notice de l'article provenant de la source Math-Net.Ru
One-dimensional mixed problem for the heat equation is studied, with time advance in nonlocal and non-self-adjoint boundary conditions, describing the real physical process. Under minimal conditions on the initial data, unique solvability is proved and an explicit representation for the solution is obtained.
Keywords:
The mixed problem, deviation on time, residue method.
@article{IVM_2020_3_a2,
author = {Yu. A. Mammadov and H. I. Ahmadov},
title = {A mixed problem for the heat equation with advanced time in boundary conditions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {29--47},
publisher = {mathdoc},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/}
}
TY - JOUR AU - Yu. A. Mammadov AU - H. I. Ahmadov TI - A mixed problem for the heat equation with advanced time in boundary conditions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 29 EP - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/ LA - ru ID - IVM_2020_3_a2 ER -
Yu. A. Mammadov; H. I. Ahmadov. A mixed problem for the heat equation with advanced time in boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 29-47. http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/