A mixed problem for the heat equation with advanced time in boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 29-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional mixed problem for the heat equation is studied, with time advance in nonlocal and non-self-adjoint boundary conditions, describing the real physical process. Under minimal conditions on the initial data, unique solvability is proved and an explicit representation for the solution is obtained.
Keywords: The mixed problem, deviation on time, residue method.
@article{IVM_2020_3_a2,
     author = {Yu. A. Mammadov and H. I. Ahmadov},
     title = {A mixed problem for the heat equation with advanced time in boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--47},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/}
}
TY  - JOUR
AU  - Yu. A. Mammadov
AU  - H. I. Ahmadov
TI  - A mixed problem for the heat equation with advanced time in boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 29
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/
LA  - ru
ID  - IVM_2020_3_a2
ER  - 
%0 Journal Article
%A Yu. A. Mammadov
%A H. I. Ahmadov
%T A mixed problem for the heat equation with advanced time in boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 29-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/
%G ru
%F IVM_2020_3_a2
Yu. A. Mammadov; H. I. Ahmadov. A mixed problem for the heat equation with advanced time in boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 29-47. http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/

[1] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[2] Rasulov M.L., Metod konturnogo integrala, Nauka, M., 1964

[3] Wu I., Theory and applications of partial functional differential equations, Springer, New York, 1996 | MR | Zbl

[4] Zarubin A.N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Ucheb. posobie, OGU, Orel, 1997

[5] Teo K. L., “Second order linear partial differential equations of parabolic type with delayed arguments”, Nanta Math., 10:2 (1977), 119–130 | MR | Zbl

[6] Mishev D. P., “Necessary and sufficient conditions for oscillation of reatrded type of parabolic differential equations”, C. R. Acad. Bulgare Sci., 44:3 (1991), 11–14 | MR | Zbl

[7] Podgornov V.V., “Pervaya kraevaya zadacha dlya kvazilineinykh parabolicheskikh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 3:8 (1967), 1334–1341 | MR | Zbl

[8] Iaakbariekh A., Sakbaev V.Zh., “Korrektnost zadachi dlya parabolicheskikh differentsialno-raznostnykh uravnenii so sdvigami vremennogo argumenta”, Izv. vuzov. Matem., 2015, no. 4, 17–24

[9] Utkina E.A., “Kharakteristicheskaya granichnaya zadacha dlya uravneniya chetvertogo poryadka s psevdoparabolicheskim operatorom so smescheniem argumentov iskomoi funktsii”, Differents. uravneniya, 51:3 (2015), 421–424 | DOI | MR | Zbl

[10] Kamynin L.I., “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zhurn. vychisl. matem. i matem. fiziki, 4:6 (1964), 1006–1024

[11] Ionkin N.I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1997), 294–304 | MR

[12] Mamedov Yu.A., “Matematicheskaya postanovka i reshenie odnoi zadachi teploprovodnosti pri chastichno determinirovannom granichnom rezhime”, Vestn. BGU, 3 (2005), 5–11

[13] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969

[14] Petrovskii I.G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961 | MR

[15] Mikhlin S.G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR

[16] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Am. Math. Soc. Trans., 9:4 (1908), 373–395 | DOI | MR | Zbl