Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_3_a2, author = {Yu. A. Mammadov and H. I. Ahmadov}, title = {A mixed problem for the heat equation with advanced time in boundary conditions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {29--47}, publisher = {mathdoc}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/} }
TY - JOUR AU - Yu. A. Mammadov AU - H. I. Ahmadov TI - A mixed problem for the heat equation with advanced time in boundary conditions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 29 EP - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/ LA - ru ID - IVM_2020_3_a2 ER -
Yu. A. Mammadov; H. I. Ahmadov. A mixed problem for the heat equation with advanced time in boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2020), pp. 29-47. http://geodesic.mathdoc.fr/item/IVM_2020_3_a2/
[1] Lavrentev M.A., Shabat B.V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[2] Rasulov M.L., Metod konturnogo integrala, Nauka, M., 1964
[3] Wu I., Theory and applications of partial functional differential equations, Springer, New York, 1996 | MR | Zbl
[4] Zarubin A.N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Ucheb. posobie, OGU, Orel, 1997
[5] Teo K. L., “Second order linear partial differential equations of parabolic type with delayed arguments”, Nanta Math., 10:2 (1977), 119–130 | MR | Zbl
[6] Mishev D. P., “Necessary and sufficient conditions for oscillation of reatrded type of parabolic differential equations”, C. R. Acad. Bulgare Sci., 44:3 (1991), 11–14 | MR | Zbl
[7] Podgornov V.V., “Pervaya kraevaya zadacha dlya kvazilineinykh parabolicheskikh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 3:8 (1967), 1334–1341 | MR | Zbl
[8] Iaakbariekh A., Sakbaev V.Zh., “Korrektnost zadachi dlya parabolicheskikh differentsialno-raznostnykh uravnenii so sdvigami vremennogo argumenta”, Izv. vuzov. Matem., 2015, no. 4, 17–24
[9] Utkina E.A., “Kharakteristicheskaya granichnaya zadacha dlya uravneniya chetvertogo poryadka s psevdoparabolicheskim operatorom so smescheniem argumentov iskomoi funktsii”, Differents. uravneniya, 51:3 (2015), 421–424 | DOI | MR | Zbl
[10] Kamynin L.I., “Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi granichnymi usloviyami”, Zhurn. vychisl. matem. i matem. fiziki, 4:6 (1964), 1006–1024
[11] Ionkin N.I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1997), 294–304 | MR
[12] Mamedov Yu.A., “Matematicheskaya postanovka i reshenie odnoi zadachi teploprovodnosti pri chastichno determinirovannom granichnom rezhime”, Vestn. BGU, 3 (2005), 5–11
[13] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969
[14] Petrovskii I.G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961 | MR
[15] Mikhlin S.G., Kurs matematicheskoi fiziki, Nauka, M., 1968 | MR
[16] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Am. Math. Soc. Trans., 9:4 (1908), 373–395 | DOI | MR | Zbl