Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_2_a5, author = {A. V. Platonov}, title = {Stability analysis of nonstationary switched systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {63--73}, publisher = {mathdoc}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/} }
A. V. Platonov. Stability analysis of nonstationary switched systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 63-73. http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/
[1] Decarlo R. A., Branicky M. S., Pettersson S., Lennartson B., “Perspectives and results on the stability and stabilizability of hybrid systems”, Proc. IEEE, 88:7 (2000), 1069–1082 | DOI
[2] Liberzon D., Switching in systems and control, Birkhäuser, Boston, MA, 2003 | MR | Zbl
[3] Hespanha J. P., Morse A. S., “Stability of switched systems with average dwell-time”, Proc. 38th IEEE Conf. on Decision and Control, 1999, 2655–2660 | MR
[4] Shorten R., Wirth F., Mason O., Wulf K., King G., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl
[5] Zhai G., Hu B., Yasuda K., Michel A. N., “Disturbance attention properties of time-controlled switched systems”, J. Franklin Institute, 338:7 (2001), 765–779 | DOI | MR | Zbl
[6] Aleksandrov A. Yu., Kosov A. A., Platonov A. V., “On the asymptotic stability of switched homogeneous systems”, Syst. Control Lett., 61:1 (2012), 127–133 | DOI | MR | Zbl
[7] Ding X., Liu X., “On stabilizability of switched positive linear systems under state-dependent switching”, Appl. Math. Comput., 307 (2017), 92–101 | MR | Zbl
[8] Xiang W., Xiao J., “Stabilization of switched continuous-time systems with all modes unstable via dwell time switching”, Automatica J. IFAC, 50:3 (2014), 940–945 | DOI | MR | Zbl
[9] Yang H., Jiang B., Cocquempot V., “A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes”, Nonlinear Anal.: Hybrid Systems, 13 (2014), 45–60 | DOI | MR | Zbl
[10] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., Chen Ya., “Otsenka oblasti prityazheniya dlya odnogo klassa nelineinykh sistem s pereklyucheniyami”, Izv. vuzov. Matem., 2017, no. 8, 3–16 | Zbl
[11] Cruz-Zavala E., Moreno J. A., “Homogeneous high order sliding mode design: a Lyapunov approach”, Automatica J. IFAC, 80 (2017), 232–238 | DOI | MR | Zbl
[12] Wang R., Xing J., Xiang Z., “Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching”, Appl. Math. Comput., 316 (2018), 229–244 | MR | Zbl
[13] Wang F., Zhang X., Chen B., Lin C., Li X., Zhang J., “Adaptive finite-time tracking control of switched nonlinear systems”, Information Sci., 421 (2017), 126–135 | DOI | MR
[14] Shen Y., Huang Y., Gu J., “Global finite-time observers for lipschitz nonlinear systems”, IEEE Trans. Automat. Control, 56:2 (2011), 418–424 | DOI | MR | Zbl
[15] Zhang B., “On finite-time stability of switched systems with hybrid homogeneous degrees”, Mathematical Problems in Engineering, 2018, 3096986 | MR | Zbl
[16] Kozlov V. V., “Ob ustoichivosti polozhenii ravnovesiya v nestatsionarnom silovom pole”, Prikl. matem. i mekhan., 55:1 (1991), 12–19 | MR | Zbl
[17] Andreev A. S., “Ob ustoichivosti polozheniya ravnovesiya neavtonomnoi mekhanicheskoi sistemy”, Prikl. matem. i mekhan., 60:3 (1996), 388–396 | MR | Zbl
[18] Agafonov S. A., “Ob ustoichivosti i stabilizatsii dvizheniya nekonservativnykh mekhanicheskikh sistem”, Prikl. matem. i mekhan., 74:4 (2010), 560–566 | MR | Zbl
[19] Aleksandrov A. Yu., Aleksandrova E. B., Lakrisenko P. A., Platonov A. V., Chen Y., “Asymptotic stability conditions for some classes of mechanical systems with switched nonlinear force fields”, Nonlinear Dyn. Syst. Theory, 15:2 (2015), 127–140 | MR | Zbl
[20] Aleksandrov A. Yu., Kosov A. A., Chen Ya., “Ob ustoichivosti i stabilizatsii mekhanicheskikh sistem s pereklyucheniyami”, Avtomatika i telemekhanika, 2011, no. 6, 5–17 | Zbl
[21] Platonov A. V., “Ob asimptoticheskoi ustoichivosti nelineinykh nestatsionarnykh sistem s pereklyucheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2018, no. 6, 20–32 | DOI | Zbl