Stability analysis of nonstationary switched systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 63-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem of asymptotic stability for nonstationary switched systems. The direct Lyapunov method is used. It is assumed that for any mode a comparison equation in the Bernoulli form is constructed for the considered system. Sufficient conditions on the nonstationary coefficients of the comparison equations and the switching law are found to guarantee the asymptotic stability of the zero solution of the studied system. Obtained results are applied to the stability analysis of some classes of mechanical systems with switched force fields.
Keywords: nonstationary switched systems, asymptotic stability, Lyapunov's direct method.
@article{IVM_2020_2_a5,
     author = {A. V. Platonov},
     title = {Stability analysis of nonstationary switched systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--73},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/}
}
TY  - JOUR
AU  - A. V. Platonov
TI  - Stability analysis of nonstationary switched systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 63
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/
LA  - ru
ID  - IVM_2020_2_a5
ER  - 
%0 Journal Article
%A A. V. Platonov
%T Stability analysis of nonstationary switched systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 63-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/
%G ru
%F IVM_2020_2_a5
A. V. Platonov. Stability analysis of nonstationary switched systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 63-73. http://geodesic.mathdoc.fr/item/IVM_2020_2_a5/

[1] Decarlo R. A., Branicky M. S., Pettersson S., Lennartson B., “Perspectives and results on the stability and stabilizability of hybrid systems”, Proc. IEEE, 88:7 (2000), 1069–1082 | DOI

[2] Liberzon D., Switching in systems and control, Birkhäuser, Boston, MA, 2003 | MR | Zbl

[3] Hespanha J. P., Morse A. S., “Stability of switched systems with average dwell-time”, Proc. 38th IEEE Conf. on Decision and Control, 1999, 2655–2660 | MR

[4] Shorten R., Wirth F., Mason O., Wulf K., King G., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl

[5] Zhai G., Hu B., Yasuda K., Michel A. N., “Disturbance attention properties of time-controlled switched systems”, J. Franklin Institute, 338:7 (2001), 765–779 | DOI | MR | Zbl

[6] Aleksandrov A. Yu., Kosov A. A., Platonov A. V., “On the asymptotic stability of switched homogeneous systems”, Syst. Control Lett., 61:1 (2012), 127–133 | DOI | MR | Zbl

[7] Ding X., Liu X., “On stabilizability of switched positive linear systems under state-dependent switching”, Appl. Math. Comput., 307 (2017), 92–101 | MR | Zbl

[8] Xiang W., Xiao J., “Stabilization of switched continuous-time systems with all modes unstable via dwell time switching”, Automatica J. IFAC, 50:3 (2014), 940–945 | DOI | MR | Zbl

[9] Yang H., Jiang B., Cocquempot V., “A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes”, Nonlinear Anal.: Hybrid Systems, 13 (2014), 45–60 | DOI | MR | Zbl

[10] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., Chen Ya., “Otsenka oblasti prityazheniya dlya odnogo klassa nelineinykh sistem s pereklyucheniyami”, Izv. vuzov. Matem., 2017, no. 8, 3–16 | Zbl

[11] Cruz-Zavala E., Moreno J. A., “Homogeneous high order sliding mode design: a Lyapunov approach”, Automatica J. IFAC, 80 (2017), 232–238 | DOI | MR | Zbl

[12] Wang R., Xing J., Xiang Z., “Finite-time stability and stabilization of switched nonlinear systems with asynchronous switching”, Appl. Math. Comput., 316 (2018), 229–244 | MR | Zbl

[13] Wang F., Zhang X., Chen B., Lin C., Li X., Zhang J., “Adaptive finite-time tracking control of switched nonlinear systems”, Information Sci., 421 (2017), 126–135 | DOI | MR

[14] Shen Y., Huang Y., Gu J., “Global finite-time observers for lipschitz nonlinear systems”, IEEE Trans. Automat. Control, 56:2 (2011), 418–424 | DOI | MR | Zbl

[15] Zhang B., “On finite-time stability of switched systems with hybrid homogeneous degrees”, Mathematical Problems in Engineering, 2018, 3096986 | MR | Zbl

[16] Kozlov V. V., “Ob ustoichivosti polozhenii ravnovesiya v nestatsionarnom silovom pole”, Prikl. matem. i mekhan., 55:1 (1991), 12–19 | MR | Zbl

[17] Andreev A. S., “Ob ustoichivosti polozheniya ravnovesiya neavtonomnoi mekhanicheskoi sistemy”, Prikl. matem. i mekhan., 60:3 (1996), 388–396 | MR | Zbl

[18] Agafonov S. A., “Ob ustoichivosti i stabilizatsii dvizheniya nekonservativnykh mekhanicheskikh sistem”, Prikl. matem. i mekhan., 74:4 (2010), 560–566 | MR | Zbl

[19] Aleksandrov A. Yu., Aleksandrova E. B., Lakrisenko P. A., Platonov A. V., Chen Y., “Asymptotic stability conditions for some classes of mechanical systems with switched nonlinear force fields”, Nonlinear Dyn. Syst. Theory, 15:2 (2015), 127–140 | MR | Zbl

[20] Aleksandrov A. Yu., Kosov A. A., Chen Ya., “Ob ustoichivosti i stabilizatsii mekhanicheskikh sistem s pereklyucheniyami”, Avtomatika i telemekhanika, 2011, no. 6, 5–17 | Zbl

[21] Platonov A. V., “Ob asimptoticheskoi ustoichivosti nelineinykh nestatsionarnykh sistem s pereklyucheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2018, no. 6, 20–32 | DOI | Zbl