Effective algorithms for computing global and local posterior error estimates of solutions to linear ill-posed problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 29-38
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problems of calculating global and local a-posteriori error estimates of approximate solutions to ill-posed inverse problems, introduced and investigated earlier by the author. For linear inverse problems in Hilbert spaces, they consist in maximizing a quadratic functional with two quadratic constraints. The article shows how under certain conditions these problems can be reduced to a problem of maximizing a special (written analytically) differentiable functional with one constraint. New algorithms for calculating global and local a-posteriori error estimates based on the solution of these problems are proposed. Their effectiveness is illustrated by numerical experiments on a-posteriori error estimation of solutions to the model two-dimensional inverse problem of potential continuation. Experiments show that the proposed algorithms give a-posteriori error estimates close to the true error values. Proposed algorithms for global a-posteriori error estimation turn out to be more rapid (3 to 5 times) than the previously known algorithms.
Keywords:
linear ill-posed problems, regularizing algorithms, a-posteriori error estimates.
@article{IVM_2020_2_a3,
author = {A. S. Leonov},
title = {Effective algorithms for computing global and local posterior error estimates of solutions to linear ill-posed problems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {29--38},
publisher = {mathdoc},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_2_a3/}
}
TY - JOUR AU - A. S. Leonov TI - Effective algorithms for computing global and local posterior error estimates of solutions to linear ill-posed problems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 29 EP - 38 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_2_a3/ LA - ru ID - IVM_2020_2_a3 ER -
%0 Journal Article %A A. S. Leonov %T Effective algorithms for computing global and local posterior error estimates of solutions to linear ill-posed problems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 29-38 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_2_a3/ %G ru %F IVM_2020_2_a3
A. S. Leonov. Effective algorithms for computing global and local posterior error estimates of solutions to linear ill-posed problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2020), pp. 29-38. http://geodesic.mathdoc.fr/item/IVM_2020_2_a3/