Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_1_a3, author = {L. M. Kozhevnikova}, title = {Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {30--45}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/} }
TY - JOUR AU - L. M. Kozhevnikova TI - Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 30 EP - 45 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/ LA - ru ID - IVM_2020_1_a3 ER -
%0 Journal Article %A L. M. Kozhevnikova %T Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 30-45 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/ %G ru %F IVM_2020_1_a3
L. M. Kozhevnikova. Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 30-45. http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/
[1] Dal Maso G., Murat F., Orsina L., Prignet A., “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:4 (1999), 741–808 | MR | Zbl
[2] Malusa A., “A new proof of the stability of renormalized solutions to elliptic equations with measure data”, Asymptotic Anal., 43:1–2 (2005), 111–129 | MR | Zbl
[3] Bidaut-Verón M. F., “Removable singularities and existence for a quasilinear equation with absorption or source term and measure data”, Adv. Nonlinear Stud., 3:1 (2003), 25–63 | MR | Zbl
[4] Malusa A., Porzio M. M., “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389 | DOI | MR | Zbl
[5] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Probl. matem. analiza, 54 (2011), 23–112 | Zbl
[6] Alkhutov Yu. A., “O gelderovoi nepreryvnosti p(x)-garmonicheskikh funktsii”, Matem. sb., 196:2 (2005), 3–28 | DOI | Zbl
[7] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev spaces with variable exponents, Springer, N.-Y., 2011 | MR | Zbl
[8] Nyanquini I., Ouaro S., Soma S., “Entropy solution to nonlinear multivalued elliptic problem with variable exponents and measure data”, Annals Univ. Craiova, Math. and Comp. Sci. Ser., 40:2 (2013), 1–25 | MR
[9] Zhang C., “Entropy solutions to nonlinear elliptic equations with variable exponents”, Electron. J. Diff. Equat., 2014:92 (2014), 1–14 | MR
[10] Benboubker M. B., Chrayteh H., El Moumni M., Hjiaj H., “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sinica, English Ser., 31:1 (2015), 151–169 | DOI | MR | Zbl
[11] Ahmedatt T., Azroul E., Hjiaj H., Touzani A., “Existence of Entropy solutions for some nonlinear elliptic problems involving variable exponent and measure data”, Bol. Soc. Paran. Mat., 36:2 (2018), 33–55 | DOI | MR | Zbl
[12] Zhang C., Zhou S., “Entropy and renormalized solutions for the p(x)-laplacian equation with mesure data”, Bull. Aust. Math. Soc., 82:3 (2010), 459–479 | DOI | MR | Zbl
[13] Konaté I., Ouaro S., “Good Radon measure for anisotropic problems with variable exponent”, Electron. J. Diff. Equat., 2016:221 (2016), 1–19 | MR
[14] Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl
[15] Kozhevnikova L. M., “Ob entropiinom reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Zh. vychisl. matem. i matem. fiz., 57:3 (2017), 429–447 | DOI | MR | Zbl
[16] Kozhevnikova L. M., “Suschestvovanie entropiinykh reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozheniya. Temat. obzor., 139, 2017, 15–38
[17] Kozhevnikova L. M., “Ob entropiinykh resheniyakh anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Sovr. matem. Fundament. napravleniya, 63, no. 3, 2017, 475–493 | MR
[18] Kozhevnikova L. M., “Entropiinye i renormalizovannye resheniya anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei”, Matem. sb., 210:3 (2019), 131–161 | DOI | MR | Zbl
[19] Mukminov F. Kh., “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Matem. sb., 208:8 (2017), 106–125 | DOI | MR | Zbl
[20] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Elliptic Equat., 56:7–9 (2011), 623–642 | DOI | MR | Zbl
[21] Benboubker M. B., Azroul E., Barbara A., “Quasilinear elliptic problems with nonstandartd growths”, Electron. J. Diff. Equat., 2011:62 (2011), 1–16 | MR