Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of anisotropic elliptic equations of second order with variable exponents of nonlinearity when a special form of Radon measure is used as the right-hand side. In anisotropic Sobolev spaces with variable exponents of nonlinearity, the some properties and uniqueness of entropy and renormalized solutions of the Dirichlet problem in arbitrary domains are established. In addition, we prove the equivalence of entropy and renormalized solutions of the considered problem.
Mots-clés : anisotropic elliptic equation, existence of solution
Keywords: entropy solution, renormalized solution, uniqueness of solution, variable exponent, Radon measure data, Dirichlet problem, unbounded domain.
@article{IVM_2020_1_a3,
     author = {L. M. Kozhevnikova},
     title = {Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--45},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 30
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/
LA  - ru
ID  - IVM_2020_1_a3
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 30-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/
%G ru
%F IVM_2020_1_a3
L. M. Kozhevnikova. Equivalence of entropy and renormalized solutions of the anisotropic elliptic problem in unbounded domains with measure data. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 30-45. http://geodesic.mathdoc.fr/item/IVM_2020_1_a3/

[1] Dal Maso G., Murat F., Orsina L., Prignet A., “Renormalized solutions of elliptic equations with general measure data”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:4 (1999), 741–808 | MR | Zbl

[2] Malusa A., “A new proof of the stability of renormalized solutions to elliptic equations with measure data”, Asymptotic Anal., 43:1–2 (2005), 111–129 | MR | Zbl

[3] Bidaut-Verón M. F., “Removable singularities and existence for a quasilinear equation with absorption or source term and measure data”, Adv. Nonlinear Stud., 3:1 (2003), 25–63 | MR | Zbl

[4] Malusa A., Porzio M. M., “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal., 67:8 (2007), 2370–2389 | DOI | MR | Zbl

[5] Zhikov V. V., “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Probl. matem. analiza, 54 (2011), 23–112 | Zbl

[6] Alkhutov Yu. A., “O gelderovoi nepreryvnosti p(x)-garmonicheskikh funktsii”, Matem. sb., 196:2 (2005), 3–28 | DOI | Zbl

[7] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev spaces with variable exponents, Springer, N.-Y., 2011 | MR | Zbl

[8] Nyanquini I., Ouaro S., Soma S., “Entropy solution to nonlinear multivalued elliptic problem with variable exponents and measure data”, Annals Univ. Craiova, Math. and Comp. Sci. Ser., 40:2 (2013), 1–25 | MR

[9] Zhang C., “Entropy solutions to nonlinear elliptic equations with variable exponents”, Electron. J. Diff. Equat., 2014:92 (2014), 1–14 | MR

[10] Benboubker M. B., Chrayteh H., El Moumni M., Hjiaj H., “Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data”, Acta Math. Sinica, English Ser., 31:1 (2015), 151–169 | DOI | MR | Zbl

[11] Ahmedatt T., Azroul E., Hjiaj H., Touzani A., “Existence of Entropy solutions for some nonlinear elliptic problems involving variable exponent and measure data”, Bol. Soc. Paran. Mat., 36:2 (2018), 33–55 | DOI | MR | Zbl

[12] Zhang C., Zhou S., “Entropy and renormalized solutions for the p(x)-laplacian equation with mesure data”, Bull. Aust. Math. Soc., 82:3 (2010), 459–479 | DOI | MR | Zbl

[13] Konaté I., Ouaro S., “Good Radon measure for anisotropic problems with variable exponent”, Electron. J. Diff. Equat., 2016:221 (2016), 1–19 | MR

[14] Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22:2 (1995), 241–273 | MR | Zbl

[15] Kozhevnikova L. M., “Ob entropiinom reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Zh. vychisl. matem. i matem. fiz., 57:3 (2017), 429–447 | DOI | MR | Zbl

[16] Kozhevnikova L. M., “Suschestvovanie entropiinykh reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozheniya. Temat. obzor., 139, 2017, 15–38

[17] Kozhevnikova L. M., “Ob entropiinykh resheniyakh anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei v neogranichennykh oblastyakh”, Sovr. matem. Fundament. napravleniya, 63, no. 3, 2017, 475–493 | MR

[18] Kozhevnikova L. M., “Entropiinye i renormalizovannye resheniya anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei”, Matem. sb., 210:3 (2019), 131–161 | DOI | MR | Zbl

[19] Mukminov F. Kh., “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva–Orlicha”, Matem. sb., 208:8 (2017), 106–125 | DOI | MR | Zbl

[20] Fan X., “Anisotropic variable exponent Sobolev spaces and $p(x)$-Laplacian equations”, Complex Var. Elliptic Equat., 56:7–9 (2011), 623–642 | DOI | MR | Zbl

[21] Benboubker M. B., Azroul E., Barbara A., “Quasilinear elliptic problems with nonstandartd growths”, Electron. J. Diff. Equat., 2011:62 (2011), 1–16 | MR