A theories of classical propositional logic and counterimages of substitutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 26-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study theories based on the classical propositional logic. It follows from the lemma of Sushko's that for any classical propositional theory $T$ and substitution function $\varepsilon$ of formulas instead of propositional variables, the set $\varepsilon^{-1}(T)$ is also a classical propositional theory. In the paper, it is proved the following statement being more strong: for any consistent finitely axiomatized classical propositional theory $T$ there exists a substitution function $\varepsilon$ such that $T$ is a preimage of the set of all tautologies under $\varepsilon$. An algorithm of constructing of such a substitution function is given.
Keywords: lattice of theories of classical propositional logic, counterimages of substitutions, Suszko's lemma.
Mots-clés : unification
@article{IVM_2020_1_a2,
     author = {I. A. Gorbunov},
     title = {A theories of classical propositional logic and counterimages of substitutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {26--29},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_1_a2/}
}
TY  - JOUR
AU  - I. A. Gorbunov
TI  - A theories of classical propositional logic and counterimages of substitutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 26
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_1_a2/
LA  - ru
ID  - IVM_2020_1_a2
ER  - 
%0 Journal Article
%A I. A. Gorbunov
%T A theories of classical propositional logic and counterimages of substitutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 26-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_1_a2/
%G ru
%F IVM_2020_1_a2
I. A. Gorbunov. A theories of classical propositional logic and counterimages of substitutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2020), pp. 26-29. http://geodesic.mathdoc.fr/item/IVM_2020_1_a2/

[1] Wójcicki R., Lectures on propositional calculi www.studialogica.org/wojcicki

[2] Wójcicki R., Lectures on propositional calculi, Ossolineum, Wroclaw, 1984 | MR | Zbl