Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_12_a6, author = {A. A. Arutyunov}, title = {Combinatorial description of derivations in group algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--81}, publisher = {mathdoc}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/} }
A. A. Arutyunov. Combinatorial description of derivations in group algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 74-81. http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/
[1] Dales H. G., Banach algebras and automatic continuity, Clarendon Press, Oxford Univ. Press, 2000 | MR | Zbl
[2] Kaplansky I., “Derivations of Banach algebras”, Seminars on anal. functions, v. II, Princeton Univ. Press, Princeton, N.J., 1958, 254–258
[3] Kadison R. V., “Derivations of operator algebras”, Ann. Math., 83 (1966), 280–293 | DOI | MR | Zbl
[4] Kadison R. V., Ringrose J. R., “Derivations of operator group algebras”, Amer. J. Math., 88:3 (1966), 562–576 | DOI | MR | Zbl
[5] Losert V., “The derivation problem for group algebras”, Ann. Math. (2), 168:1 (2008), 221–246 | DOI | MR | Zbl
[6] Artemovych O. D., Bovdi V. A., Salim M. A., Derivations of group rings, 2020, arXiv: 2003.01346 [math.RA] | MR
[7] Benson D. J., Representations and cohomology, v. I, Cambridge Stud. Adv. Math., 30, Basic representation theory of finite groups and associative algebras, Cambridge, 1991 | MR | Zbl
[8] Benson D. J., Representations and cohomology, v. II, Cambridge Stud. Adv. Math., 31, Cohomology of groups and modules | MR
[9] Burghelea D., “The Cyclic Homology of the group rings”, Comentarii Math. Helvetci, 1985, 354–365 | DOI | MR | Zbl
[10] Mishchenko A. S., “Correlation between the Hochschild Cohomology and the Eilenberg–MacLane Cohomology of Group Algebras from a Geometric Point of View”, Russ. J. Math. Phys., 27 (2020), 236–250 | DOI | MR | Zbl
[11] Boucher D., Ulmer F., “Linear codes using skew polynomials with automorphisms and derivations”, Designs, Codes and Cryptography, 70:3 (2014), 405–431 | DOI | MR | Zbl
[12] Creedon L., Hughes K., “Derivations on group algebras with coding theory applications”, Finite Fields and Their Appl., 56 (2019), 247–265 | DOI | MR | Zbl
[13] Arutyunov A. A., Mishchenko A. S., Shtern A. I., “Derivations of group algebras”, Fundam. Prikl. Mat., 21:6 (2016), 65–78 | MR
[14] Arutyunov A. A., “Algebra differentsirovanii v nekommutativnykh gruppovykh algebrakh”, Tr. MIAN, 308, 2020, 28–41 | Zbl
[15] Arutyunov A. A., Mischenko A. S., “Gladkaya versiya problemy Dzhonsona o derivatsiyakh gruppovykh algebr”, Matem. sb., 210:6 (2019), 3–29 | MR | Zbl
[16] Arutyunov A. A., Alekseev A. V., “Complex of $n$-categories and derivations in group algebras”, Topology and its Appl., 275 (2020), 107002 | DOI | MR | Zbl
[17] Alekseev A. V., Arutyunov A. A., “Derivations in semigroup algebras”, Eurasian Math. J., 11:2 (2020), 9–18 | DOI | MR | Zbl
[18] Alekseev A. V., Arutyunov A. A., Silvestrov S., On $(\sigma,\tau)-$derivations of group algebra as category characters, 2020, arXiv: 2008.00390 | MR
[19] Richard L., Silvestrov S. D., “Quasi-Lie structure of $\sigma$-derivations of $\mathbb{C}[t^{\pm 1}]$”, J. Algebra, 319:3 (2008), 1285–1304 | DOI | MR | Zbl
[20] Freudenthal H., “Uber die Enden topologischer Rhume und Gruppen”, Math. Zeitschrift, 33 (1931), 692–713 | DOI | MR
[21] Stallings J. R., “On torsion-free groups with infinitely many ends with More than One End”, Ann. Math., 88 (1968), 312–334 | DOI | MR | Zbl
[22] Stallings J. R., Group Theory and Three-dimensional Manifolds with More than One End, Math. Monograph, 4, 1971 | MR
[23] Dunwoody M. J., “Cutting up graphs”, Combinatorica, 2:1 (1982), 15–23 | DOI | MR | Zbl
[24] Niblo G. A., “A Geometric Proof of Stallings' Theorem on Groups with More than One End”, Geometriae Dedicata, 105:61 (2004), 61–76 | DOI | MR | Zbl
[25] Noskov G. A., Remeslennikov V. N., Romankov V. A., “Beskonechnye gruppy”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 17, VINITI, M., 1979, 65–157 | MR
[26] Sageev M., “Ends of Group Pairs and Non-Positively Curved Cube Complexes with More than One End”, Proc. London Math. Society, s3-71:3 (1995), 585–617 | DOI | MR | Zbl
[27] Geoghegan R., Topological methods in group theory, Springer-Verlag, N.Y., 2008 | MR | Zbl