Combinatorial description of derivations in group algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 74-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of derivations in group algebras using the results of combinatorial group theory. A survey of old results is given, describing derivations in group algebras as characters on an adjoint action groupoid. In this paper, new assertions are presented that make it possible to connect differentiations of group algebras with the theory of ends of groups and in particular Stallings theorem. A homological interpretation of the results obtained is also given. We also construct a generalization of the proposed construction for the case of modules over a group ring.
Keywords: group algebra, Stallings theorem, derivations, ends of group.
@article{IVM_2020_12_a6,
     author = {A. A. Arutyunov},
     title = {Combinatorial description of derivations in group algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--81},
     publisher = {mathdoc},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/}
}
TY  - JOUR
AU  - A. A. Arutyunov
TI  - Combinatorial description of derivations in group algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 74
EP  - 81
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/
LA  - ru
ID  - IVM_2020_12_a6
ER  - 
%0 Journal Article
%A A. A. Arutyunov
%T Combinatorial description of derivations in group algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 74-81
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/
%G ru
%F IVM_2020_12_a6
A. A. Arutyunov. Combinatorial description of derivations in group algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 74-81. http://geodesic.mathdoc.fr/item/IVM_2020_12_a6/

[1] Dales H. G., Banach algebras and automatic continuity, Clarendon Press, Oxford Univ. Press, 2000 | MR | Zbl

[2] Kaplansky I., “Derivations of Banach algebras”, Seminars on anal. functions, v. II, Princeton Univ. Press, Princeton, N.J., 1958, 254–258

[3] Kadison R. V., “Derivations of operator algebras”, Ann. Math., 83 (1966), 280–293 | DOI | MR | Zbl

[4] Kadison R. V., Ringrose J. R., “Derivations of operator group algebras”, Amer. J. Math., 88:3 (1966), 562–576 | DOI | MR | Zbl

[5] Losert V., “The derivation problem for group algebras”, Ann. Math. (2), 168:1 (2008), 221–246 | DOI | MR | Zbl

[6] Artemovych O. D., Bovdi V. A., Salim M. A., Derivations of group rings, 2020, arXiv: 2003.01346 [math.RA] | MR

[7] Benson D. J., Representations and cohomology, v. I, Cambridge Stud. Adv. Math., 30, Basic representation theory of finite groups and associative algebras, Cambridge, 1991 | MR | Zbl

[8] Benson D. J., Representations and cohomology, v. II, Cambridge Stud. Adv. Math., 31, Cohomology of groups and modules | MR

[9] Burghelea D., “The Cyclic Homology of the group rings”, Comentarii Math. Helvetci, 1985, 354–365 | DOI | MR | Zbl

[10] Mishchenko A. S., “Correlation between the Hochschild Cohomology and the Eilenberg–MacLane Cohomology of Group Algebras from a Geometric Point of View”, Russ. J. Math. Phys., 27 (2020), 236–250 | DOI | MR | Zbl

[11] Boucher D., Ulmer F., “Linear codes using skew polynomials with automorphisms and derivations”, Designs, Codes and Cryptography, 70:3 (2014), 405–431 | DOI | MR | Zbl

[12] Creedon L., Hughes K., “Derivations on group algebras with coding theory applications”, Finite Fields and Their Appl., 56 (2019), 247–265 | DOI | MR | Zbl

[13] Arutyunov A. A., Mishchenko A. S., Shtern A. I., “Derivations of group algebras”, Fundam. Prikl. Mat., 21:6 (2016), 65–78 | MR

[14] Arutyunov A. A., “Algebra differentsirovanii v nekommutativnykh gruppovykh algebrakh”, Tr. MIAN, 308, 2020, 28–41 | Zbl

[15] Arutyunov A. A., Mischenko A. S., “Gladkaya versiya problemy Dzhonsona o derivatsiyakh gruppovykh algebr”, Matem. sb., 210:6 (2019), 3–29 | MR | Zbl

[16] Arutyunov A. A., Alekseev A. V., “Complex of $n$-categories and derivations in group algebras”, Topology and its Appl., 275 (2020), 107002 | DOI | MR | Zbl

[17] Alekseev A. V., Arutyunov A. A., “Derivations in semigroup algebras”, Eurasian Math. J., 11:2 (2020), 9–18 | DOI | MR | Zbl

[18] Alekseev A. V., Arutyunov A. A., Silvestrov S., On $(\sigma,\tau)-$derivations of group algebra as category characters, 2020, arXiv: 2008.00390 | MR

[19] Richard L., Silvestrov S. D., “Quasi-Lie structure of $\sigma$-derivations of $\mathbb{C}[t^{\pm 1}]$”, J. Algebra, 319:3 (2008), 1285–1304 | DOI | MR | Zbl

[20] Freudenthal H., “Uber die Enden topologischer Rhume und Gruppen”, Math. Zeitschrift, 33 (1931), 692–713 | DOI | MR

[21] Stallings J. R., “On torsion-free groups with infinitely many ends with More than One End”, Ann. Math., 88 (1968), 312–334 | DOI | MR | Zbl

[22] Stallings J. R., Group Theory and Three-dimensional Manifolds with More than One End, Math. Monograph, 4, 1971 | MR

[23] Dunwoody M. J., “Cutting up graphs”, Combinatorica, 2:1 (1982), 15–23 | DOI | MR | Zbl

[24] Niblo G. A., “A Geometric Proof of Stallings' Theorem on Groups with More than One End”, Geometriae Dedicata, 105:61 (2004), 61–76 | DOI | MR | Zbl

[25] Noskov G. A., Remeslennikov V. N., Romankov V. A., “Beskonechnye gruppy”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 17, VINITI, M., 1979, 65–157 | MR

[26] Sageev M., “Ends of Group Pairs and Non-Positively Curved Cube Complexes with More than One End”, Proc. London Math. Society, s3-71:3 (1995), 585–617 | DOI | MR | Zbl

[27] Geoghegan R., Topological methods in group theory, Springer-Verlag, N.Y., 2008 | MR | Zbl