On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener--Hopf equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 22-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the homogeneous vector Riemann boundary value problem (factorization problem) is investigated from a new position — the Riemann problem is reduced to the truncated Wiener–Hopf equation (convolution equation on finite interval). In this paper, we find a connection between the problem of factorization of the matrix-function in the Wiener algebra of order two and the truncated Wiener–Hopf equation. An explicit formula for this relationship is obtained. Note that the matrix-function studied in this paper has not the most General form in Wiener algebra, which is not important in this case. The truncated Wiener–Hopf equation is one of the most studied Fredholm integral equations of the second kind. Therefore, we can expect that the idea of such information will lead to new results in the study of the factorization problem.
Keywords: truncated Wiener–Hopf equation, Wiener algebra, factorization problem, Riemann boundary value problem, matrix-function
Mots-clés : partial indices.
@article{IVM_2020_12_a2,
     author = {A. F. Voronin},
     title = {On the relationship between the factorization problem in the {Wiener} algebra and the truncated {Wiener--Hopf} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--31},
     publisher = {mathdoc},
     number = {12},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_12_a2/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener--Hopf equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 22
EP  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_12_a2/
LA  - ru
ID  - IVM_2020_12_a2
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener--Hopf equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 22-31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_12_a2/
%G ru
%F IVM_2020_12_a2
A. F. Voronin. On the relationship between the factorization problem in the Wiener algebra and the truncated Wiener--Hopf equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2020), pp. 22-31. http://geodesic.mathdoc.fr/item/IVM_2020_12_a2/

[1] Gokhberg I. Ts., Krein M. G., “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:2(80) (1958), 3–72

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[3] Gohberg I., Kaashoek M. A., Spitkovsky I. M., “An overview of matrix factorization theory and operator applications”, Factorization and integrable systems (Faro, 2000), Oper. Theory Adv. Appl., 141, Birkhauser, Basel, 2003, 1–102 | MR | Zbl

[4] Rogosin Sergei V., Mishuris G., “Constructive methods for factorization of matrix-functions”, IMA J. Appl. Math., 81:2 (2016), 365–391 | DOI | MR | Zbl

[5] Voronin A. F., “O svyazi obobschennoi kraevoi zadachi Rimana i usechennogo uravneniya Vinera–Khopfa”, Sib. elektron. matem. izv., 15 (2018), 412–421 | Zbl

[6] Voronin A. F., “Issledovanie zadachi R-lineinogo sopryazheniya i usechennogo uravneniya Vinera–Khopfa”, Matem. tr., 22:2 (2019), 21–33 | MR

[7] Litvinchuk G. S., “Dve teoremy ob ustoichivosti chastnykh indeksov kraevoi zadachi Rimana i ikh prilozhenie”, Izv. vuzov. Matem., 67:12 (1967), 47–57 | Zbl