Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_11_a4, author = {A. G. Chentsov}, title = {To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {65--80}, publisher = {mathdoc}, number = {11}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_11_a4/} }
TY - JOUR AU - A. G. Chentsov TI - To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 65 EP - 80 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_11_a4/ LA - ru ID - IVM_2020_11_a4 ER -
%0 Journal Article %A A. G. Chentsov %T To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 65-80 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_11_a4/ %G ru %F IVM_2020_11_a4
A. G. Chentsov. To question on some generalizations of properties of cohesion of families of sets and supercompactness of topological spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2020), pp. 65-80. http://geodesic.mathdoc.fr/item/IVM_2020_11_a4/
[1] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006
[2] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki, seriya Sovremen. probl. matem. Fundament. napravleniya, 50, 1989, 7–128
[3] de Groot J., “Superextensions and supercompactness”, Proc. I. Intern. Symp. on extension theory of topological structures and its applications, VEB Deutscher Verlag Wis., Berlin, 1969, 89–90 | MR
[4] Mill J. van, Supercompactness and Wallman spaces, Amsterdam. Math. Center Tract, 85, 1977 | MR | Zbl
[5] Strok M., Szymanski A., “Compact metric spaces have binary subbases”, Fund. Math., 89:1 (1975), 81–91 | DOI | MR | Zbl
[6] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005
[7] Chentsov A. G., “Bitopologicheskie prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. IMM UrO RAN, 24, no. 1, 2018, 257–272
[8] Chentsov A. G., “Superkompaktnye prostranstva ultrafiltrov i maksimalnykh stseplennykh sistem”, Tr. IMM UrO RAN, 25, no. 2, 2019, 240–257
[9] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye sootnosheniya”, Izv. IMI UdGU, 53 (2019), 138–157 | Zbl
[10] Chentsov A. G., “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. IMI UdGU, 49 (2017), 55–79 | Zbl
[11] Dvalishvili B. P., Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures, and Applications, Nort-Holland. Math. studies, 2005 | MR | Zbl
[12] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 27:3 (2017), 365–388 | MR | Zbl
[13] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121 | DOI | MR | Zbl
[14] Chentsov A. G., “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye svoistva i topologicheskie konstruktsii”, Izv. IMI UdGU, 52 (2018), 86–102 | Zbl
[15] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970
[16] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[17] Aleksandrov P. S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004
[18] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[19] Chentsov A. G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 1 (2011), 113–142 | Zbl
[20] Chentsov A. G., “Nekotorye svoistva ultrafiltrov shiroko ponimaemykh izmerimykh prostranstv”, Dokl. AN, 486:1 (2019), 24–29 | Zbl
[21] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968