Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_10_a4, author = {S. A. Kashchenko}, title = {Bifurcations in a delay logistic equation under small perturbations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {47--64}, publisher = {mathdoc}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_10_a4/} }
S. A. Kashchenko. Bifurcations in a delay logistic equation under small perturbations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2020), pp. 47-64. http://geodesic.mathdoc.fr/item/IVM_2020_10_a4/
[1] Wright E. M., “A non-linear difference-differential equation”, J. für die reine und angewandte Math., 194 (1955), 66–87 | MR | Zbl
[2] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=[A - By(t-\tau )]y(t)$”, Contributions to the Theory of Nonlinear Oscillations, Ann. Math. Stud., 4, Princeton Univ. Press, Princeton, 1958, 1–18 | MR
[3] Kaschenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti globalnoi ustoichivosti uravneniya Khatchinsona”, Nelineinye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62
[4] Jones G. S., “The existence of periodic solutions of $f^{\prime }(x) = -\alpha f(x - 1) [1 + f(x)]$”, J. Contemporary Math. Anal., 5 (1962), 435–450 | DOI | MR | Zbl
[5] Kaschenko S. A., “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 64–85
[6] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sci., 47:7 (2013), 470–494 | DOI
[7] Kuang Y., Delay Differential Equations : With Applications in Population Dynamics, Academic Press, Boston, 1993 | MR | Zbl
[8] Gourley S. A., Sou J. W.-H., Wu J.H., “Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics”, J. Math. Sci., 124:4 (2004), 5119–5153 | DOI | MR
[9] Hale J. K., Theory of functional differential equations, Springer Verlag, N.Y., 1977 | MR | Zbl
[10] Wu J., Theory and applications of partial functional differential equations, Springer Verlag, N.Y., 1996 | MR | Zbl
[11] Cushing J. M., Integrodifferential Equations and Delay Models in Population Dynamics, Springer, Berlin–Heidelberg, 1977 | MR | Zbl
[12] May R. M., Stability and complexity in model ecosystems, Princeton Univ. Press, Princeton, 2001 | Zbl
[13] Murray J. D., Mathematical Biology, v. II, Spatial Models and Biomedical Applications, Springer Verlag, N.Y., 2003 | MR | Zbl
[14] Kolesov A. Yu., Kolesov Yu. S., Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii, Nauka, M., 1993
[15] Oster G., Guckenheimer J., “Bifurcation Phenomena in Population Models”, The Hopf Bifurcation and Its Appl., Springer Verlag, N.Y., 1976, 327–353 | DOI | MR
[16] Erneux T., Applied delay differential equations, Springer Verlag, N.Y., 2009 | MR | Zbl
[17] Kaschenko S. A., “Bifurkatsii v okrestnosti tsikla pri malykh vozmuscheniyakh s bolshim zapazdyvaniem”, Zhurn. vychisl. matem. i matem. fiz., 40:5 (2000), 693–702 | MR
[18] Kaschenko S. A., “Bifurcational Features in Systems of Nonlinear Parabolic Equations with Weak Diffusion”, International J. Bifurcation and Chaos in Appl. Sci. and Engineering, 15:11 (2005), 3595–3606 | DOI | MR | Zbl
[19] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differents. uravneniya, 25:8 (1989), 1448–1451 | MR
[20] Kaschenko I. S., “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zhurn. vychisl. matem. i matem. fiz., 48:12 (2008), 2141–2150 | MR
[21] Kaschenko S. A., “Uravnenie Ginzburga–Landau — normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurn. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR
[22] Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Automatic Control and Computer Sci., 49:7 (2015), 514–517 | DOI
[23] Kashchenko I. S., Kashchenko S. A., “Infinite Process of Forward and Backward Bifurcations in the Logistic Equation with Two Delays”, Nonlinear Phenomena in Complex Syst., 22:4 (2019), 407–412 | DOI | Zbl
[24] Kaschenko S. A., Kolesov Yu. S., “Raskachivanie «kachelei» pri pomoschi dvukhchastotnoi sily”, Issledov. po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1978, 19–25
[25] Kaschenko S. A., Kolesov Yu. S., “Parametricheskii rezonans v sistemakh s zapazdyvaniem pri dvukhchastotnom vozmuschenii”, Sib. matem. zhurn., 21:2 (1980), 113–118 | MR
[26] Bykova N. D., Glyzin S. D., Kashchenko S. A., “Parametric Resonance in the Logistic Equation with Delay under a Two-Frequency Perturbation”, Nonlinear Phenomena in Complex Syst., 19:1 (2016), 80–87 | MR | Zbl
[27] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990
[28] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR
[29] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973