On the Aizerman problem for the scalar differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the problem of stability of the equilibrium of a $n$-th order scalar differential equation. A positive solution is obtained for the Aizerman problem for equations of a special type. We have proved that the parameter of the real part of root of the characteristic equation can be replaced by an arbitrary continuous function depending on all phase variables while preserving the properties of global asymptotic stability.
Keywords: scalar differential equation, equilibrium, stability, Lyapunov functions.
@article{IVM_2019_9_a3,
     author = {B. S. Kalitin},
     title = {On the {Aizerman} problem for the scalar differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--49},
     publisher = {mathdoc},
     number = {9},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_9_a3/}
}
TY  - JOUR
AU  - B. S. Kalitin
TI  - On the Aizerman problem for the scalar differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 37
EP  - 49
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_9_a3/
LA  - ru
ID  - IVM_2019_9_a3
ER  - 
%0 Journal Article
%A B. S. Kalitin
%T On the Aizerman problem for the scalar differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 37-49
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_9_a3/
%G ru
%F IVM_2019_9_a3
B. S. Kalitin. On the Aizerman problem for the scalar differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2019), pp. 37-49. http://geodesic.mathdoc.fr/item/IVM_2019_9_a3/

[1] Aizerman M. A., “Ob odnoi probleme, kasayuscheisya ustoichivosti “v bolshom” dinamicheskikh sistem”, Usp. matem. nauk, 4:4 (1949), 187–188 | MR | Zbl

[2] Erugin N. P., “O nekotorykh voprosakh ustoichivosti dvizheniya i kachestvennoi teorii differentsialnykh uravnenii v tselom”, Prikl. matem. i mekhan., 14:5 (1950), 459–512 | Zbl

[3] Erugin N. P., “Nekotorye obschie voprosy teorii ustoichivosti dvizheniya”, Prikl. matem. i mekhan., 15:2 (1951), 227–236 | Zbl

[4] Malkin I. G., Teoriya ustoichivosti dvizheniya, Nauka, M., 1966

[5] Krasovskii N. N., “Teoremy ob ustoichivosti dvizheniya, opredelyaemykh sistemoi dvukh uravnenii”, Prikl. matem. i mekhan., 16:3 (1952), 546–554

[6] Pliss V. A., Nekotorye problemy teorii ustoichivosti dvizheniya v tselom, Izd. LGU, L., 1958

[7] Leonov G. A., “O probleme Aizermana”, Avtomat. i telemekhan., 2009, no. 7, 37–49

[8] Hahn W., Stability of motion, Springer-Verlag, New York, 1967 | MR | Zbl

[9] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970

[10] Kalitin B. S., Ustoichivost differentsialnykh uravnenii (Metod znakopostoyannykh funktsii Lyapunova), LAP Lambert Academic Publishing, Saarbrücken, 2012

[11] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980

[12] Bulgakov N. G., Kalitin B. S., “Obobschenie teorem vtorogo metoda Lyapunova. I”, Teoriya Izv. AN BSSR. Ser. fiz.-matem. nauk, 1978, no. 3, 32–36

[13] Kalitin B. S., Ustoichivost neavtonomnykh differentsialnykh uravnenii, BGU, Minsk, 2013

[14] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967

[15] Liénard A., “Étude des oscillations autoentretienes”, Rev. Gen. Elec., 23 (1928), 901–902; 946–954

[16] Kalitin B. S., “Ob ustoichivosti uravneniya Lenara”, Izv. vuzov. Matem., 2018, no. 10, 17–28