Penalty method with descent for problems of convex optiization
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 48-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a penalty method for general convex constrained optimization problems, where each auxiliary penalized problem is replaced with an equivalent mixed variational inequality problem. This allows one to keep the decomposable structure of the initial problem and to simplify the direction finding subproblem. A gap function is utilized for evaluation of solution accuracy of the auxiliary penalized problem. Convergence of the method in primal and dual variables is established under rather weak assumptions.
Keywords: convex optimization problem, non-linear constraints, penalty method, descent method
Mots-clés : decomposition.
@article{IVM_2019_7_a4,
     author = {I. V. Konnov},
     title = {Penalty method with descent for problems of convex optiization},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--64},
     publisher = {mathdoc},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_7_a4/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Penalty method with descent for problems of convex optiization
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 48
EP  - 64
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_7_a4/
LA  - ru
ID  - IVM_2019_7_a4
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Penalty method with descent for problems of convex optiization
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 48-64
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_7_a4/
%G ru
%F IVM_2019_7_a4
I. V. Konnov. Penalty method with descent for problems of convex optiization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2019), pp. 48-64. http://geodesic.mathdoc.fr/item/IVM_2019_7_a4/

[1] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972

[2] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981

[3] Vasilev F. P., Metody optimizatsii, v. I, MTsNMO, M., 2011

[4] Nesterov Yu. E., Metody vypukloi optimizatsii, MTsNMO, M., 2010

[5] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987

[6] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[7] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Kazansk. un-t, Kazan, 2013

[8] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya, Mir, M., 1989

[9] Hogan W. W., “Point-to-set maps in mathematical programming”, SIAM Review, 15:3 (1973), 591–603 | DOI | MR | Zbl

[10] Konnov I. V., “Metod nelineinogo spuska dlya variatsionnogo neravenstva na nevypuklom mnozhestve”, Izv. vuzov. Matem., 2009, no. 1, 66–75

[11] Patriksson M., Nonlinear programming and variational inequality problems: A unified approach, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[12] Razumikhin B. S., “Iteratsionnyi metod resheniya i dekompozitsiya zadach lineinogo programmirovaniya”, Avtomatika i telemekhanika, 1967, no. 3, 80–97 | Zbl

[13] Razumikhin B. S., Fizicheskie modeli i metody teorii ravnovesiya v programmirovanii i ekonomike, Nauka, 1975

[14] Umnov A. E., “Metod shtrafnykh funktsii v zadachakh bolshoi razmernosti”, Zhurn. vychisl. matem. i matem. fiz., 15:6 (1975), 1399–1411 | MR | Zbl

[15] Auslender A., Cominetti R., Haddou M., “Asymptotic analysis for penalty methods in convex and linear programming”, Math. Oper. Res., 22:1 (1997), 43–62 | DOI | MR | Zbl