Ideal $F$-norms on $C^*$-algebras. II
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study ideal $F$-norms $\|\cdot\|_p$, $0 p +\infty$ associated with a trace $\varphi$ on a $C^*$-algebra $\mathcal{A}$. If $A, B$ of $\mathcal{A}$ are such that $|A|\leq |B|$, then $\|A\|_p \leq \|B\|_p$. We have $\|A\|_p=\|A^*\|_p$ for all $A$ from $\mathcal{A}$ ($0 p +\infty$) and $\|\cdot\|_p$ is a seminorm for $1 \leq p +\infty$. We estimate the distance from any element of unital $\mathcal{A}$ to the scalar subalgebra in the seminorm $\|\cdot\|_1$. We investigate geometric properties of semiorthogonal projections from $\mathcal{A}$. If a trace $\varphi$ is finite, then the set of all finite sums of pairwise products of projections and semiorthogonal projections (in any order) of $\mathcal{A}$ with coefficients from $\mathbb{R}^+ $ is not dense in $\mathcal{A}$.
Keywords: Hilbert space, linear operator, projection, semiorthogonal projection, unitary operator, inequality, $C^*$-algebra, trace, ideal $F$-norm.
@article{IVM_2019_3_a6,
     author = {A. M. Bikchentaev},
     title = {Ideal $F$-norms on $C^*$-algebras. {II}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--96},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_3_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Ideal $F$-norms on $C^*$-algebras. II
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 90
EP  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_3_a6/
LA  - ru
ID  - IVM_2019_3_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Ideal $F$-norms on $C^*$-algebras. II
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 90-96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_3_a6/
%G ru
%F IVM_2019_3_a6
A. M. Bikchentaev. Ideal $F$-norms on $C^*$-algebras. II. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2019), pp. 90-96. http://geodesic.mathdoc.fr/item/IVM_2019_3_a6/

[1] Bikchentaev A. M., “Idealnye $F$-normy na $C^*$-algebrakh”, Izv. vuzov. Matem., 2015, no. 5, 69–74

[2] Bikchentaev A. M., “Neravenstvo dlya sleda na unitalnoi $C^*$-algebre”, Matem. zametki, 99:4 (2016), 483–488 | DOI | Zbl

[3] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov, III. Kommutatory v $C^*$-algebrakh”, Matem. sb., 199:4 (2008), 3–20 | DOI

[4] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[5] Gross J., Trenkler G., Troschke S.-O., “On semi-orthogonality and a special class of matrices”, Linear Algebra Appl., 289:1–3 (1999), 169–182 | MR | Zbl

[6] Bikchentaev A. M., “Poluortogonalnye proektory v gilbertovom prostranstve”, Na rubezhe vekov. Nauchn.-issledov. in-t matem. i mekhan. im. N. G. Chebotareva Kazansk. gos. un-ta. 1998–2002 gg., Izd-vo Kazan. matem. o-vo, Kazan, 2003, 108–114

[7] Akemann C. A., Anderson J., Pedersen G. K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[8] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974

[9] Blackadar B., “A simple unital projectionless $C^*$-algebra”, J. Operator Theory, 5:1 (1981), 63–71 | MR | Zbl

[10] Kadison R., Pedersen G., “Means and convex combinations of unitary operators”, Math. Scand., 57:2 (1985), 249–266 | DOI | MR | Zbl

[11] Haagerup U., “On convex combinations of unitary operators in $C^*$-algebras”, Mappings of operator algebras, Progress in Math., 84, Birkhäuser, Boston, 1990, 1–13 | MR

[12] Marcoux L. W., “Projections, commutators and Lie ideals in $C^*$-algebras”, Math. Proc. R. Ir. Acad., 110A:1 (2010), 31–55 | MR | Zbl

[13] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov”, Sib. matem. zhurn., 46:1 (2005), 32–45 | Zbl