Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_2_a4, author = {E;. N. Sattorov and Z. E. Ermamatova}, title = {On recovery of solutions to homogeneous system of {Maxwell} equations in a domain by their values on a part of a boundary}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {39--48}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/} }
TY - JOUR AU - E;. N. Sattorov AU - Z. E. Ermamatova TI - On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 39 EP - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/ LA - ru ID - IVM_2019_2_a4 ER -
%0 Journal Article %A E;. N. Sattorov %A Z. E. Ermamatova %T On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 39-48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/ %G ru %F IVM_2019_2_a4
E;. N. Sattorov; Z. E. Ermamatova. On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 39-48. http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/
[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987
[2] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978
[3] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962
[4] Bers A., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966
[5] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | Zbl
[6] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 112:2 (1957), 195–197 | Zbl
[7] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990
[8] Sattorov E. N., Mardonov Dzh. A., “Zadacha Koshi dlya sistemy uravnenii Maksvella”, Sib. matem. zhurn., 44:4 (2003), 851–861 | MR | Zbl
[9] Sattorov E. N., “O prodolzhenii resheniya odnorodnoi sistemy uravnenii Maksvella”, Izv. vuzov. Matem., 2008, no. 8, 78–83 | MR | Zbl
[10] Sattorov E. N., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii Maksvella v beskonechnoi oblasti”, Matem. zametki, 86:3 (2009), 445–455 | DOI | MR | Zbl
[11] Tarkhanov N. N., The Cauchy problem for solutions of elliptic equations, Akad. Verl., Berlin, 1995 | MR | Zbl
[12] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii teorii uprugosti i termouprugosti v prostranstve”, Izv. vuzov. Matem., 2004, no. 2, 43–53 | MR | Zbl
[13] Arbuzov E. V., Bukhgeim A. L., “Formula Karlemana dlya sistemy uravnenii elektrodinamiki na ploskosti”, Sib. elektronnye matem. izv., 2008, no. 5, 448–455 | MR | Zbl
[14] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | Zbl
[15] Yarmukhamedov Sh. Ya., “O prodolzhenii resheniya uravneniya Gelmgoltsa”, Dokl. RAN, 357:3 (1997), 320–323 | Zbl
[16] Yarmukhamedov Sh. Ya., “Regulyarizatsiya po Lavrentevu resheniya zadachi Koshi dlya uravneniya Gelmgoltsa”, DAN RUz, 2001, no. 3, 6–8
[17] Makhmudov K. O., Makhmudov O. I., Tarkhanov N., “Equations of Maxwell type”, J. Math. Anal. and Appl., 378 (2011), 64–75 | DOI | MR | Zbl
[18] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | Zbl
[19] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauchn. izd-vo, Novosibirsk, 2009
[20] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | Zbl
[21] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[22] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26
[23] Aleksidze M. A., Fundamentalnye funktsii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1989
[24] Ikehata M., “Inverse conductivity problem in the infinite slab”, Inverse Probl., 17:3 (2001), 437–454 | DOI | MR | Zbl
[25] Zhdanov M. S., Analogi integrala tipa Koshi v teorii geofizicheskikh polei, Nauka, M., 1984