On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 39-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the analytic continuation of the solution of the system of Maxwell equations in a bounded space domain from the values of the solution on part of the boundary of this domain, i. e. we study the Cauchy problem. We construct an approximate solution to this problem based on the Carleman matrix method.
Keywords: Maxwell equations, ill-posed problem, regular solution
Mots-clés : Carleman matrix.
@article{IVM_2019_2_a4,
     author = {E;. N. Sattorov and Z. E. Ermamatova},
     title = {On recovery of solutions to homogeneous system of {Maxwell} equations in a domain by their values on a part of a boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--48},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/}
}
TY  - JOUR
AU  - E;. N. Sattorov
AU  - Z. E. Ermamatova
TI  - On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 39
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/
LA  - ru
ID  - IVM_2019_2_a4
ER  - 
%0 Journal Article
%A E;. N. Sattorov
%A Z. E. Ermamatova
%T On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 39-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/
%G ru
%F IVM_2019_2_a4
E;. N. Sattorov; Z. E. Ermamatova. On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 39-48. http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/

[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987

[2] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[3] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, VTs SO AN SSSR, Novosibirsk, 1962

[4] Bers A., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966

[5] Ivanov V. K., “Zadacha Koshi dlya uravneniya Laplasa v beskonechnoi polose”, Differents. uravneniya, 1:1 (1965), 131–136 | Zbl

[6] Lavrentev M. M., “O zadache Koshi dlya lineinykh ellipticheskikh uravnenii vtorogo poryadka”, DAN SSSR, 112:2 (1957), 195–197 | Zbl

[7] Aizenberg L. A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990

[8] Sattorov E. N., Mardonov Dzh. A., “Zadacha Koshi dlya sistemy uravnenii Maksvella”, Sib. matem. zhurn., 44:4 (2003), 851–861 | MR | Zbl

[9] Sattorov E. N., “O prodolzhenii resheniya odnorodnoi sistemy uravnenii Maksvella”, Izv. vuzov. Matem., 2008, no. 8, 78–83 | MR | Zbl

[10] Sattorov E. N., “Regulyarizatsiya resheniya zadachi Koshi dlya sistemy uravnenii Maksvella v beskonechnoi oblasti”, Matem. zametki, 86:3 (2009), 445–455 | DOI | MR | Zbl

[11] Tarkhanov N. N., The Cauchy problem for solutions of elliptic equations, Akad. Verl., Berlin, 1995 | MR | Zbl

[12] Makhmudov O. I., “Zadacha Koshi dlya sistemy uravnenii teorii uprugosti i termouprugosti v prostranstve”, Izv. vuzov. Matem., 2004, no. 2, 43–53 | MR | Zbl

[13] Arbuzov E. V., Bukhgeim A. L., “Formula Karlemana dlya sistemy uravnenii elektrodinamiki na ploskosti”, Sib. elektronnye matem. izv., 2008, no. 5, 448–455 | MR | Zbl

[14] Yarmukhamedov Sh. Ya., “O zadache Koshi dlya uravneniya Laplasa”, DAN SSSR, 235:2 (1977), 281–283 | Zbl

[15] Yarmukhamedov Sh. Ya., “O prodolzhenii resheniya uravneniya Gelmgoltsa”, Dokl. RAN, 357:3 (1997), 320–323 | Zbl

[16] Yarmukhamedov Sh. Ya., “Regulyarizatsiya po Lavrentevu resheniya zadachi Koshi dlya uravneniya Gelmgoltsa”, DAN RUz, 2001, no. 3, 6–8

[17] Makhmudov K. O., Makhmudov O. I., Tarkhanov N., “Equations of Maxwell type”, J. Math. Anal. and Appl., 378 (2011), 64–75 | DOI | MR | Zbl

[18] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, DAN SSSR, 151:3 (1963), 501–504 | Zbl

[19] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Sib. nauchn. izd-vo, Novosibirsk, 2009

[20] Aizenberg L. A., Tarkhanov N. N., “Abstraktnaya formula Karlemana”, DAN SSSR, 298:6 (1988), 1292–1296 | Zbl

[21] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[22] Mergelyan S. N., “Garmonicheskaya approksimatsiya i priblizhennoe reshenie zadachi Koshi dlya uravneniya Laplasa”, UMN, 11:5 (1956), 3–26

[23] Aleksidze M. A., Fundamentalnye funktsii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1989

[24] Ikehata M., “Inverse conductivity problem in the infinite slab”, Inverse Probl., 17:3 (2001), 437–454 | DOI | MR | Zbl

[25] Zhdanov M. S., Analogi integrala tipa Koshi v teorii geofizicheskikh polei, Nauka, M., 1984