On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 39-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the analytic continuation of the solution of the system of Maxwell equations in a bounded space domain from the values of the solution on part of the boundary of this domain, i. e. we study the Cauchy problem. We construct an approximate solution to this problem based on the Carleman matrix method.
Keywords: Maxwell equations, ill-posed problem, regular solution
Mots-clés : Carleman matrix.
@article{IVM_2019_2_a4,
     author = {E;. N. Sattorov and Z. E. Ermamatova},
     title = {On recovery of solutions to homogeneous system of {Maxwell} equations in a domain by their values on a part of a boundary},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--48},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/}
}
TY  - JOUR
AU  - E;. N. Sattorov
AU  - Z. E. Ermamatova
TI  - On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 39
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/
LA  - ru
ID  - IVM_2019_2_a4
ER  - 
%0 Journal Article
%A E;. N. Sattorov
%A Z. E. Ermamatova
%T On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 39-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/
%G ru
%F IVM_2019_2_a4
E;. N. Sattorov; Z. E. Ermamatova. On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 39-48. http://geodesic.mathdoc.fr/item/IVM_2019_2_a4/