The main theorem for (anti)self-dual conformal torsion-free connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain results that occur on a four-manifold of conformal torsion-free connection with all possible signatures of angular metric. It is proved that three of the four terms of the formula for the decomposition of the basic tensor are equidual, one is skew-dual. Based on this result we find conditions for (anti)self-duality of external 2-forms, which are part of components of the conformal curvature matrix. With the help of the last result, the main theorem is proved: a conformal torsion-free connection on a four-manifold with the signatures of the angular metric $s=\pm 4;0$ is (anti)self-dual if and only if the Weyl tensor of the angular metric and the exterior 2-form $\Phi _{0}^{0}$ are (anti)self-dual and Einstein and Maxwell's equations are satisfied. In particular, the normal conformal Cartan connection is (anti)self-dual iff the Weyl tensor of the angular metric is the same.
Mots-clés : conformal connection
Keywords: (anti)self-duality, Weyl tensor, conformal curvature, Einstein equations, Maxwell's equations.
@article{IVM_2019_2_a3,
     author = {L. N. Krivonosov and V. A. Lukyanov},
     title = {The main theorem for (anti)self-dual conformal torsion-free connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--38},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a3/}
}
TY  - JOUR
AU  - L. N. Krivonosov
AU  - V. A. Lukyanov
TI  - The main theorem for (anti)self-dual conformal torsion-free connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 29
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a3/
LA  - ru
ID  - IVM_2019_2_a3
ER  - 
%0 Journal Article
%A L. N. Krivonosov
%A V. A. Lukyanov
%T The main theorem for (anti)self-dual conformal torsion-free connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 29-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a3/
%G ru
%F IVM_2019_2_a3
L. N. Krivonosov; V. A. Lukyanov. The main theorem for (anti)self-dual conformal torsion-free connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 29-38. http://geodesic.mathdoc.fr/item/IVM_2019_2_a3/

[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, 1962

[2] Russian Math. (Iz. VUZ), 50:11 (2006), 40–51 | MR

[3] Krivonosov L. N., Lukyanov V. A., “Struktura osnovnogo tenzora prostranstva konformnoi svyaznosti bez krucheniya. Konformnye svyaznosti na giperpoverkhnosti proektivnogo prostranstva”, Sib. zhurn. chistoi i prikl. matem., 17:2 (2017), 21–38 | MR

[4] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 421–457 | DOI | MR

[5] Singerland I. M., Thorpe J. A., “The curvature of $4$-dimensional Einstein spaces”, Global Anal., Papers in Honour of K. Kodaira, Princeton Univer. Press, Princeton, 1969, 355–365 | MR

[6] Sucheta Koshti, Naresh Dadhich, The general self-dual solution of the Einstein equations, 1994, arXiv: gr-qc/9409046

[7] Russian Acad. Sci. Sb. Math., 79:2 (1994), 447–457 | MR | Zbl

[8] Dunajski M., Anti-self-dual four-manifolds with a parallel real spinor, 2001, arXiv: math/0102225 | MR

[9] Dunajski M., Ferapontov E., Kruglikov B., On the Einstein–Weyl and conformal self-duality equations, 2014, arXiv: 1406.0018 | MR

[10] Soviet Math. (Iz. VUZ), 27:1 (1983), 1–11 | Zbl | Zbl

[11] Russian Math. Surveys, 48:1 (1993), 1–35 | DOI | MR | Zbl

[12] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966

[13] Krivonosov L. N., Lukyanov V. A., “Uravneniya Einshteina na chetyrekhmernom mnogoobrazii konformnoi svyaznosti bez krucheniya”, Zhurn. Sib. federal. un-ta. Ser. Matem. i fiz., 5:3 (2012), 393–408

[14] Krivonosov L. N., Lukyanov V. A., “Svyaz uravnenii Yanga–Millsa s uravneniyami Einshteina i Maksvella”, Zhurn. Sib. federal. un-ta. Ser. Matem. i fiz., 2:4 (2009), 432–448