Computational (Numerical) diameter in a context of general theory of a recovery
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 89-97

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a C(N)D-statement consisting of the known and elaborating in decades C(N)D-1 statement which can be and should be interpreted as quantitative statement of approximation theory and calculus mathematics, which together with new prolongations of C(N)D-2 and -3 in aggregate is suggested as natural theoretical and computational scheme of further developments of numerical analysis.
Keywords: computational (Numerical) Diameter (C(N)D), approximation theory in quantitative statement, calculus mathematics, recovery by exact and inexact information, limiting error, new scheme of numerical analysis.
@article{IVM_2019_1_a9,
     author = {N. Temirgaliev and A. Zh. Zhubanysheva},
     title = {Computational {(Numerical)} diameter in a context of general theory of a recovery},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--97},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a9/}
}
TY  - JOUR
AU  - N. Temirgaliev
AU  - A. Zh. Zhubanysheva
TI  - Computational (Numerical) diameter in a context of general theory of a recovery
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 89
EP  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_1_a9/
LA  - ru
ID  - IVM_2019_1_a9
ER  - 
%0 Journal Article
%A N. Temirgaliev
%A A. Zh. Zhubanysheva
%T Computational (Numerical) diameter in a context of general theory of a recovery
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 89-97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_1_a9/
%G ru
%F IVM_2019_1_a9
N. Temirgaliev; A. Zh. Zhubanysheva. Computational (Numerical) diameter in a context of general theory of a recovery. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 89-97. http://geodesic.mathdoc.fr/item/IVM_2019_1_a9/