Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 52-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In steady 3D ideal gas flow between bow shock wave and nose part of the body in uniform supersonic flow, isoentropic stream surfaces are extracted which originate at closed lines on the shock and envelope its leading point. It was shown that each vortex line is closed and surrounds the isoentropic stream surface once. The integral invariant of isoentropic stream surfaces was obtained — the circulation vector of vorticity over (closed) vortex lines. This result is 3D generalization of the Crocco invariant for axisymmetric flow.
Keywords: Helmholtz theorems on vortices, Helmholtz–Zorawski criterion, isoenergetic flows, vorticity, detached bow shock, Crocco invariant.
@article{IVM_2019_12_a4,
     author = {V. N. Golubkin and G. B. Sizykh},
     title = {Generalization of the {Crocco} invariant for {3D} gas flows behind detached bow shock wave},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--56},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a4/}
}
TY  - JOUR
AU  - V. N. Golubkin
AU  - G. B. Sizykh
TI  - Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 52
EP  - 56
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a4/
LA  - ru
ID  - IVM_2019_12_a4
ER  - 
%0 Journal Article
%A V. N. Golubkin
%A G. B. Sizykh
%T Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 52-56
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a4/
%G ru
%F IVM_2019_12_a4
V. N. Golubkin; G. B. Sizykh. Generalization of the Crocco invariant for 3D gas flows behind detached bow shock wave. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 52-56. http://geodesic.mathdoc.fr/item/IVM_2019_12_a4/

[1] Crocco L., “Eine neue Stromfunktion für die Erforschung der Bewegung der Gase mit Rotation”, ZAMM, 17:1 (1937), 1–7 | DOI | Zbl

[2] Sizykh G. B., “Znachenie entropii na poverkhnosti nesimmetrichnoi vypukloi golovnoi chasti pri sverkhzvukovom obtekanii”, PMM, 83:3 (2019), 377–383

[3] Von Mises R., Mathematical theory of compressible fluid flow, Academic Press, New York, 1958 | MR | Zbl

[4] Prim R., Truesdell C., “A derivation of Zorawski's criterion for permanent vector-lines”, Proc. Amer. Math. Soc., 1950, no. 1, 32–34 | MR | Zbl

[5] Truesdell C., The kinematics of vorticity, Indiana Univ. Press, Bloomington, 1954 | MR | Zbl

[6] Golubinskii A. I., Sychev Vik. V., “O nekotorykh svoistvakh sokhraneniya vikhrevykh techenii gaza”, DAN SSSR, 237:4 (1977), 798–799 | Zbl

[7] Golubkin V. N., Sizykh G. B., “O nekotorykh obschikh svoistvakh ploskoparallelnykh techenii vyazkoi zhidkosti”, Izv. RAN. MZhG, 1987, no. 3, 176–178

[8] Golubkin V. N., Markov V. V., Sizykh G. B., “Integralnyi invariant uravnenii dvizheniya vyazkogo gaza”, PMM, 79:6 (2015), 808–816 | Zbl

[9] Sizykh G. B., “Metod dobavleniya zavikhrennosti”, Izv. RAN. MZhG, 2016, no. 3, 26–31 | DOI

[10] Kotsur O. S., “O suschestvovanii lokalnykh sposobov vychisleniya skorosti perenosa vikhrevykh trubok s sokhraneniem ikh intensivnosti”, Tr. MFTI, 11:1 (2019), 76–85