Unreduced generalized endoprimal abelian groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The endofunction on abelian group $A$ is the function $f: A^n\to A$, such that $\varphi f(x_1,\ldots, $ $ x_n) = f(\varphi(x_1),\ldots, \varphi(x_n))$ for all endomorphisms $\varphi$ of group $A$ and all $n $ from $ \mathbb{N}$. If each endofunction has the form $f(x_1,\ldots, x_n) = \sum_{i = 1}^n \lambda_ix_i$ for some central endomorphisms $\lambda_1,\ldots, \lambda_n$ of a group $A$, then such a group is called generalized endoprimal ($GE$-group). In the paper, we find $GE$-groups in the class of nonreduced abelian groups. In addition, results concerning connections of $GE$-groups with abelian groups whose endomorphism rings are unique addition rings have been obtained.
Keywords: abelian group, endofunction, endoprimality, endomorphism ring.
@article{IVM_2019_11_a3,
     author = {O. V. Lyubimtsev},
     title = {Unreduced generalized endoprimal abelian groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--38},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/}
}
TY  - JOUR
AU  - O. V. Lyubimtsev
TI  - Unreduced generalized endoprimal abelian groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 32
EP  - 38
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/
LA  - ru
ID  - IVM_2019_11_a3
ER  - 
%0 Journal Article
%A O. V. Lyubimtsev
%T Unreduced generalized endoprimal abelian groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 32-38
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/
%G ru
%F IVM_2019_11_a3
O. V. Lyubimtsev. Unreduced generalized endoprimal abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 32-38. http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/

[1] Davey B., “Dualisability in general and endodualisability in particular”, Logic and Algebra, Lect. Notes in Pure and Appl. Math., 180, Marcel Dekker, New York, 1996, 437–455 | MR | Zbl

[2] Davey B., Pitkethly J., “Endoprimal algebras”, Algebra Univers., 38:3 (1997), 266–288 | DOI | MR | Zbl

[3] Kaarli K., Márki L., “Endoprimal abelian groups”, J. Austral. Math. Soc. (Ser. A), 67:3 (1999), 412–428 | DOI | MR | Zbl

[4] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal abelian groups”, J. Algebra Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl

[5] Göbel R., Kaarli K., Marki L., Wallutis S. L., “Endoprimal torsion-free separable abelian groups”, J. Algebra Appl., 3:1 (2004), 61–73 | DOI | MR | Zbl

[6] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | Zbl

[7] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | Zbl

[8] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1974

[9] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[10] Lyubimtsev O. V., “Neredutsirovannye abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 101:3 (2017), 425–429 | DOI | MR | Zbl