Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_11_a3, author = {O. V. Lyubimtsev}, title = {Unreduced generalized endoprimal abelian groups}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {32--38}, publisher = {mathdoc}, number = {11}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/} }
O. V. Lyubimtsev. Unreduced generalized endoprimal abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 32-38. http://geodesic.mathdoc.fr/item/IVM_2019_11_a3/
[1] Davey B., “Dualisability in general and endodualisability in particular”, Logic and Algebra, Lect. Notes in Pure and Appl. Math., 180, Marcel Dekker, New York, 1996, 437–455 | MR | Zbl
[2] Davey B., Pitkethly J., “Endoprimal algebras”, Algebra Univers., 38:3 (1997), 266–288 | DOI | MR | Zbl
[3] Kaarli K., Márki L., “Endoprimal abelian groups”, J. Austral. Math. Soc. (Ser. A), 67:3 (1999), 412–428 | DOI | MR | Zbl
[4] Albrecht U., Breaz S., Wickless W., “Generalized endoprimal abelian groups”, J. Algebra Appl., 5:1 (2006), 1–17 | DOI | MR | Zbl
[5] Göbel R., Kaarli K., Marki L., Wallutis S. L., “Endoprimal torsion-free separable abelian groups”, J. Algebra Appl., 3:1 (2004), 61–73 | DOI | MR | Zbl
[6] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135:2 (1988), 210–224 | Zbl
[7] Lyubimtsev O. V., “Separabelnye abelevy gruppy bez krucheniya s $UA$-koltsami endomorfizmov”, Fundament. i prikl. matem., 4:4 (1998), 1419–1422 | Zbl
[8] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1974
[9] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[10] Lyubimtsev O. V., “Neredutsirovannye abelevy gruppy s UA-koltsami endomorfizmov”, Matem. zametki, 101:3 (2017), 425–429 | DOI | MR | Zbl