Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_10_a6, author = {K. S. Lapin}, title = {Total {Poisson} boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {62--74}, publisher = {mathdoc}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/} }
TY - JOUR AU - K. S. Lapin TI - Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 62 EP - 74 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/ LA - ru ID - IVM_2019_10_a6 ER -
%0 Journal Article %A K. S. Lapin %T Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 62-74 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/ %G ru %F IVM_2019_10_a6
K. S. Lapin. Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 62-74. http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/
[1] Yoshizawa T., “Liapunov's function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl
[2] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001
[3] Bailey F. N., “The application of Lyapunov's second method to interconnected systems”, SIAM J. Control (USA), ser. A, 3:3 (1965), 443–462 | MR | Zbl
[4] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl
[5] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | Zbl
[6] Lapin K. S., “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 73–86 | Zbl
[7] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | Zbl
[8] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i totalnaya ogranichennost reshenii po Puassonu”, Izv. vuzov. Matem., 2019, no. 8, 21–30
[9] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | MR
[10] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980
[11] Abdullin R. Z., Anapolskii L. Yu., Voronov A. A., Zemlyakov A. S., Kozlov R. I., Malikov A. I., Matrosov V. M., Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987
[12] Piontkovskii A. A., Rutkovskaya L. D., “Issledovanie nekotorykh zadach teorii ustoichivosti s pomoschyu metoda vektornoi funktsii Lyapunova”, Avtomatika i telemekhanika, 1967, no. 10, 23–31
[13] Letov A. M., Ustoichivost nelineinykh reguliruemykh sistem, Fizmatlit, M., 1962 | MR