Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 62-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the concept of a $\mathcal{P}$-perturbed system and, in particular, $\mathcal{P}$-perturbed complex system. Based on the method Lyapunov functions we obtain the sufficient condition of total Poisson boundedness of solutions of $\mathcal{P}$-perturbed systems with respect to any linear system with constant coefficients. Based on the method of vector Lyapunov functions and the above condition we obtain sufficient conditions of total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex system and solutions of $\mathcal{P}$-perturbed complex systems with feedback loop.
Keywords: $\mathcal{P}$-perturbed system, complex system, Lyapunov function, total Poisson boundedness of solutions.
@article{IVM_2019_10_a6,
     author = {K. S. Lapin},
     title = {Total {Poisson} boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--74},
     publisher = {mathdoc},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 62
EP  - 74
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/
LA  - ru
ID  - IVM_2019_10_a6
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 62-74
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/
%G ru
%F IVM_2019_10_a6
K. S. Lapin. Total Poisson boundedness of solutions of $\mathcal{P}$-perturbed complex systems of differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 62-74. http://geodesic.mathdoc.fr/item/IVM_2019_10_a6/

[1] Yoshizawa T., “Liapunov's function and boundedness of solutions”, Funkcialaj Ekvacioj, 2 (1959), 95–142 | MR | Zbl

[2] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[3] Bailey F. N., “The application of Lyapunov's second method to interconnected systems”, SIAM J. Control (USA), ser. A, 3:3 (1965), 443–462 | MR | Zbl

[4] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl

[5] Lapin K. S., “Ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii i funktsii Lyapunova”, Matem. zametki, 103:2 (2018), 223–235 | Zbl

[6] Lapin K. S., “Vektor-funktsii Lyapunova i ogranichennost v predele po Puassonu reshenii sistem differentsialnykh uravnenii”, Matem. zametki, 104:1 (2018), 73–86 | Zbl

[7] Lapin K. S., “Totalnaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Matem. zametki, 104:2 (2018), 243–254 | Zbl

[8] Lapin K. S., “Vysshie proizvodnye funktsii Lyapunova i totalnaya ogranichennost reshenii po Puassonu”, Izv. vuzov. Matem., 2019, no. 8, 21–30

[9] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980 | MR

[10] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980

[11] Abdullin R. Z., Anapolskii L. Yu., Voronov A. A., Zemlyakov A. S., Kozlov R. I., Malikov A. I., Matrosov V. M., Metod vektornykh funktsii Lyapunova v teorii ustoichivosti, Nauka, M., 1987

[12] Piontkovskii A. A., Rutkovskaya L. D., “Issledovanie nekotorykh zadach teorii ustoichivosti s pomoschyu metoda vektornoi funktsii Lyapunova”, Avtomatika i telemekhanika, 1967, no. 10, 23–31

[13] Letov A. M., Ustoichivost nelineinykh reguliruemykh sistem, Fizmatlit, M., 1962 | MR