Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 46-61
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems with selfadjoint operators and noise-free initial data in a Hilbert space. We refine the earlier author's results on the convergence rate of the methods under investigation. We establish the sufficient conditions and the necessary conditions, close to one another, for the qualified convergence of these methods in terms of the solution's sourcewise index. We prove that the considered methods cannot converge with the polynomial rate greater than the certain limit, except for the trivial case.
Keywords:
ill-posed Cauchy problem, finite difference scheme, quasi-reversibility method, operator calculus, selfadjoint operator
Mots-clés : convergence rate, sourcewise representation, interpolation spaces.
Mots-clés : convergence rate, sourcewise representation, interpolation spaces.
@article{IVM_2019_10_a5,
author = {M. M. Kokurin},
title = {Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed {Cauchy} problems in a {Hilbert} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {46--61},
publisher = {mathdoc},
number = {10},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/}
}
TY - JOUR AU - M. M. Kokurin TI - Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 46 EP - 61 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ LA - ru ID - IVM_2019_10_a5 ER -
%0 Journal Article %A M. M. Kokurin %T Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 46-61 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ %G ru %F IVM_2019_10_a5
M. M. Kokurin. Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 46-61. http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/