Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_10_a5, author = {M. M. Kokurin}, title = {Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed {Cauchy} problems in a {Hilbert} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {46--61}, publisher = {mathdoc}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/} }
TY - JOUR AU - M. M. Kokurin TI - Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 46 EP - 61 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ LA - ru ID - IVM_2019_10_a5 ER -
%0 Journal Article %A M. M. Kokurin %T Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 46-61 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ %G ru %F IVM_2019_10_a5
M. M. Kokurin. Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 46-61. http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/
[1] Bakushinskii A. B., Kokurin M. Yu., Klyuchev V. V., “Ob otsenke skorosti skhodimosti i pogreshnosti raznostnykh metodov resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Vychisl. metody i programmirov., 7 (2006), 163–171
[2] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1995
[3] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[4] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “Ob odnom klasse raznostnykh skhem resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Zhurn. vychisl. matem. i matem. fiziki, 52:3 (2012), 483–498 | MR | Zbl
[5] Haase M., The functional calculus for sectorial operators, Birkhäuser, Basel, 2006 | MR | Zbl
[6] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[7] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2007
[8] Bakushinskii A. B., “Raznostnye metody resheniya nekorrektnykh zadach Koshi dlya evolyutsionnykh uravnenii v kompleksnom $B$-prostranstve”, Differents. uravneniya, 8:9 (1972), 1661–1668 | Zbl
[9] Kokurin M. M., “Ob optimizatsii otsenok skorosti skhodimosti nekotorykh klassov raznostnykh skhem resheniya nekorrektnoi zadachi Koshi”, Vychisl. metody i programmirov., 14 (2013), 58–76
[10] Kokurin M. M., “Neobkhodimye i dostatochnye usloviya stepennoi skhodimosti metoda kvaziobrascheniya i raznostnykh metodov resheniya nekorrektnoi zadachi Koshi v usloviyakh tochnykh dannykh”, Zhurn. vychisl. matem. i matem. fiziki, 55:12 (2015), 2027–2041 | Zbl
[11] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, M., 2004
[12] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
[13] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970