Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_10_a5, author = {M. M. Kokurin}, title = {Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed {Cauchy} problems in a {Hilbert} space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {46--61}, publisher = {mathdoc}, number = {10}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/} }
TY - JOUR AU - M. M. Kokurin TI - Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 46 EP - 61 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ LA - ru ID - IVM_2019_10_a5 ER -
%0 Journal Article %A M. M. Kokurin %T Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 46-61 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/ %G ru %F IVM_2019_10_a5
M. M. Kokurin. Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 46-61. http://geodesic.mathdoc.fr/item/IVM_2019_10_a5/