Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 81-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss finite element numerical schemes for solving the continuum mechanics problems. Previously a method of acceleration of calculations was developed which uses the simplicial mesh inscribed in the original cubic cell partition of a three-dimensional body. In this work we show that the obstacle to the construction of this design may be described in terms of homology groups modulo 2. The main goal of the work is to develop a method of removing this obstacle. The achievement of the goal is based on efficient algorithms for computing bases of the homology groups which are dual with respect to the intersection form.
Keywords: computational topology, polyhedron, cell complex, homology group, manifold, intersection form, continuum mechanics, finite element method.
@article{IVM_2018_9_a7,
     author = {E. I. Yakovlev and D. T. Chekmarev},
     title = {Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--96},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/}
}
TY  - JOUR
AU  - E. I. Yakovlev
AU  - D. T. Chekmarev
TI  - Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 81
EP  - 96
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/
LA  - ru
ID  - IVM_2018_9_a7
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%A D. T. Chekmarev
%T Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 81-96
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/
%G ru
%F IVM_2018_9_a7
E. I. Yakovlev; D. T. Chekmarev. Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 81-96. http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/

[1] Lapteva A. V., Yakovlev E. I., “Index vector-function and minimal cycles”, Lobachevskii J. Math., 22 (2006), 35–46 | MR | Zbl

[2] Guskov I., Wood Z. J., “Topological noise removal”, Graphics Interface Proceedings, 2001, 19–26

[3] Wood Z. J., Hoppe H., Desbrun M., Shroder P., “Removing excess topology from isosurfaces”, ACM Transactions on graphics, 23:2 (2004), 190–208 | DOI

[4] Lapteva A. V., Yakovlev E. I., “Minimal $1$-cycles generating a canonical basis of $2$-manifold's homology group”, Internat. J. Pure and Appl. Math., 31:4 (2006), 555–570 | MR | Zbl

[5] Ghrist R., Muhammad A., “Coverage and hole-detection in sensor networks via homology”, Proc. 4th internat. symposium on Information processing in sensor networks, IEEE Press, 2005, 254–260

[6] De Silva V., Glirist R., “Homological sensor networks”, Notices Amer. Math. Soc., 54:1 (2007), 10–17 | MR | Zbl

[7] Bazaikin Ya. V., Baikov V. A., Taimanov I. A., Yakovlev A. A., “Chislennyi analiz topologicheskikh kharakteristik trekhmernykh geologicheskikh modelei neftegazovykh mestorozhdenii”, Matem. modelirovanie, 25:10 (2013), 19–31 | Zbl

[8] Chekmarev D. T., “Chislennye skhemy metoda konechnogo elementa na “azhurnykh” setkakh”, Voprosy atomnoi nauki i tekhn. Ser. Matem. modelirovanie fizich. protsessov, 2, 2009, 49–54

[9] Spirin S. V., Chekmarev D. T., Zhidkov A. V., “Solving the $3$D elasticity problems by rare mesh FEM scheme”, Finite Diff. Methods, Theory and Appl., Lect. Notes in Comput. Sci., 9045, 2015, 379–384 | DOI | MR | Zbl

[10] Chekmarev D. T., Zhidkov A. V., Zefirov S. V., Krutova K. A., Spirin S. V., “Chislennoe reshenie trekhmernykh zadach teorii uprugosti i plastichnosti s ispolzovaniem azhurnykh variatsionno-raznostnykh i KE skhem”, XI Vserossiisk. s'ezd po fundamentalnym probl. teor. i prikl. mekhan., sb. dokl. (20–24 avgusta g., g. Kazan), Izd-vo KFU, Kazan, 2015, 4048–4050

[11] Chekmarev D. T., Krutova K. A., “Ob odnom svoistve geksaedralnykh setok kak grafov”, Obrazovanie, nauka i ekonom. v vuzakh i shkolakh. Integratsiya v mezhdunar. obrazovatelnoe prostranstvo, Tr. Mezhdunarodn. nauchn. konf. (28 sentyabrya–2 oktyabrya g., Armeniya, Goris), v. I, Izd-vo RUDN, M., 2015, 98–101

[12] Reese S., Wriggers P., “A stabilization technique to avoid hourglassing in finite elasticity”, Int. J. Num. Meth. Engrg., 48 (2000), 79–109 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[13] Golovanov A. I., Kornishin M. S., Vvedenie v metod konechnykh elementov statiki tonkikh obolochek, Izd-vo KFTI, Kazan, 1990

[14] Krutova K. A., Chislennoe reshenie trekhmernykh dinamicheskikh zadach teorii uprugosti i plastichnosti na osnove azhurnoi variatsionno-raznostnoi skhemy, Diss. ... kand. fiz.-matem. nauk, NNGU, Nizhnii Novgorod, 2015

[15] Zhidkov A. V., Krutova K. A., Mironov A. A., Chekmarev D. T., “Chislennoe reshenie trekhmernykh dinamicheskikh uprugoplasticheskikh zadach s ispolzovaniem azhurnoi skhemy metoda konechnykh elementov”, Probl. prochnosti i plastichnosti, 79:3 (2017), 327–337

[16] Zeifert G., Trelfall V., Topologiya, RKhD, Izhevsk, 2001

[17] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976

[18] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[19] Yakovlev E. I., Vychislitelnaya topologiya, Izd-vo NNGU, Nizhnii Novgorod, 2005

[20] Novikov F. A., Diskretnaya matematika dlya programmistov, Izd-vo Piter, SPb., 2000

[21] Yakovlev E. I., Tsenova A. A., “Algoritm vychisleniya bazisov grupp dvumernykh gomologii razvetvlennykh triangulirovannykh poverkhnostei”, Tr. Nizhegorodsk. gos. tekhn. un-ta im. R. E. Alekseeva, 2012, no. 2 (95), 331—338 | MR

[22] Edelsbrunner H., Harer J. L., Computational topology. An introduction, AMS, 2010 | MR | Zbl