Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_9_a7, author = {E. I. Yakovlev and D. T. Chekmarev}, title = {Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {81--96}, publisher = {mathdoc}, number = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/} }
TY - JOUR AU - E. I. Yakovlev AU - D. T. Chekmarev TI - Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 81 EP - 96 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/ LA - ru ID - IVM_2018_9_a7 ER -
%0 Journal Article %A E. I. Yakovlev %A D. T. Chekmarev %T Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 81-96 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/ %G ru %F IVM_2018_9_a7
E. I. Yakovlev; D. T. Chekmarev. Topological methods in one numerical scheme of solving three-dimensional continuum mechanics problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 81-96. http://geodesic.mathdoc.fr/item/IVM_2018_9_a7/
[1] Lapteva A. V., Yakovlev E. I., “Index vector-function and minimal cycles”, Lobachevskii J. Math., 22 (2006), 35–46 | MR | Zbl
[2] Guskov I., Wood Z. J., “Topological noise removal”, Graphics Interface Proceedings, 2001, 19–26
[3] Wood Z. J., Hoppe H., Desbrun M., Shroder P., “Removing excess topology from isosurfaces”, ACM Transactions on graphics, 23:2 (2004), 190–208 | DOI
[4] Lapteva A. V., Yakovlev E. I., “Minimal $1$-cycles generating a canonical basis of $2$-manifold's homology group”, Internat. J. Pure and Appl. Math., 31:4 (2006), 555–570 | MR | Zbl
[5] Ghrist R., Muhammad A., “Coverage and hole-detection in sensor networks via homology”, Proc. 4th internat. symposium on Information processing in sensor networks, IEEE Press, 2005, 254–260
[6] De Silva V., Glirist R., “Homological sensor networks”, Notices Amer. Math. Soc., 54:1 (2007), 10–17 | MR | Zbl
[7] Bazaikin Ya. V., Baikov V. A., Taimanov I. A., Yakovlev A. A., “Chislennyi analiz topologicheskikh kharakteristik trekhmernykh geologicheskikh modelei neftegazovykh mestorozhdenii”, Matem. modelirovanie, 25:10 (2013), 19–31 | Zbl
[8] Chekmarev D. T., “Chislennye skhemy metoda konechnogo elementa na “azhurnykh” setkakh”, Voprosy atomnoi nauki i tekhn. Ser. Matem. modelirovanie fizich. protsessov, 2, 2009, 49–54
[9] Spirin S. V., Chekmarev D. T., Zhidkov A. V., “Solving the $3$D elasticity problems by rare mesh FEM scheme”, Finite Diff. Methods, Theory and Appl., Lect. Notes in Comput. Sci., 9045, 2015, 379–384 | DOI | MR | Zbl
[10] Chekmarev D. T., Zhidkov A. V., Zefirov S. V., Krutova K. A., Spirin S. V., “Chislennoe reshenie trekhmernykh zadach teorii uprugosti i plastichnosti s ispolzovaniem azhurnykh variatsionno-raznostnykh i KE skhem”, XI Vserossiisk. s'ezd po fundamentalnym probl. teor. i prikl. mekhan., sb. dokl. (20–24 avgusta g., g. Kazan), Izd-vo KFU, Kazan, 2015, 4048–4050
[11] Chekmarev D. T., Krutova K. A., “Ob odnom svoistve geksaedralnykh setok kak grafov”, Obrazovanie, nauka i ekonom. v vuzakh i shkolakh. Integratsiya v mezhdunar. obrazovatelnoe prostranstvo, Tr. Mezhdunarodn. nauchn. konf. (28 sentyabrya–2 oktyabrya g., Armeniya, Goris), v. I, Izd-vo RUDN, M., 2015, 98–101
[12] Reese S., Wriggers P., “A stabilization technique to avoid hourglassing in finite elasticity”, Int. J. Num. Meth. Engrg., 48 (2000), 79–109 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[13] Golovanov A. I., Kornishin M. S., Vvedenie v metod konechnykh elementov statiki tonkikh obolochek, Izd-vo KFTI, Kazan, 1990
[14] Krutova K. A., Chislennoe reshenie trekhmernykh dinamicheskikh zadach teorii uprugosti i plastichnosti na osnove azhurnoi variatsionno-raznostnoi skhemy, Diss. ... kand. fiz.-matem. nauk, NNGU, Nizhnii Novgorod, 2015
[15] Zhidkov A. V., Krutova K. A., Mironov A. A., Chekmarev D. T., “Chislennoe reshenie trekhmernykh dinamicheskikh uprugoplasticheskikh zadach s ispolzovaniem azhurnoi skhemy metoda konechnykh elementov”, Probl. prochnosti i plastichnosti, 79:3 (2017), 327–337
[16] Zeifert G., Trelfall V., Topologiya, RKhD, Izhevsk, 2001
[17] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976
[18] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR
[19] Yakovlev E. I., Vychislitelnaya topologiya, Izd-vo NNGU, Nizhnii Novgorod, 2005
[20] Novikov F. A., Diskretnaya matematika dlya programmistov, Izd-vo Piter, SPb., 2000
[21] Yakovlev E. I., Tsenova A. A., “Algoritm vychisleniya bazisov grupp dvumernykh gomologii razvetvlennykh triangulirovannykh poverkhnostei”, Tr. Nizhegorodsk. gos. tekhn. un-ta im. R. E. Alekseeva, 2012, no. 2 (95), 331—338 | MR
[22] Edelsbrunner H., Harer J. L., Computational topology. An introduction, AMS, 2010 | MR | Zbl