Cancellable elements of the lattice of epigroup varieties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 59-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We completely determine all commutative epigroup varieties that are cancellable elements of the lattice EPI of all epigroup varieties. In particular, we verify that a commutative epigroup variety is a cancellable element of the lattice EPI if and only if it is a modular element of this lattice.
Keywords: epigroup, variety, cancellable element of a lattice, modular element of a lattice.
@article{IVM_2018_9_a5,
     author = {D. V. Skokov},
     title = {Cancellable elements of the lattice of epigroup varieties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--67},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a5/}
}
TY  - JOUR
AU  - D. V. Skokov
TI  - Cancellable elements of the lattice of epigroup varieties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 59
EP  - 67
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a5/
LA  - ru
ID  - IVM_2018_9_a5
ER  - 
%0 Journal Article
%A D. V. Skokov
%T Cancellable elements of the lattice of epigroup varieties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 59-67
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a5/
%G ru
%F IVM_2018_9_a5
D. V. Skokov. Cancellable elements of the lattice of epigroup varieties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 59-67. http://geodesic.mathdoc.fr/item/IVM_2018_9_a5/

[1] Shevrin L. N., “K teorii epigrupp. I, II”, Matem. sb., 185:8 (1994), 129–160 | Zbl

[2] Shevrin L. N., “Epigroups”, Structural theory of automata, semigroups, and universal algebra, eds. Kudryavtsev V. B., Rosenberg I. G., Springer, Dordrecht, 2005, 331–380 | DOI | MR

[3] Shevrin L. N., Vernikov B. M., Volkov M. V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36 | Zbl

[4] Vernikov B. M., “Special elements in lattices of semigroup varieties”, Acta Sci. Math. (Szeged), 81:1–2 (2015), 79–109 | DOI | MR | Zbl

[5] Skokov D. V., “Distributivnye elementy reshetki mnogoobrazii epigrupp”, Sib. elektron. matem. izv., 2015, no. 12, 723–731 | MR | Zbl

[6] Skokov D. V., “Spetsialnye elementy nekotorykh tipov v reshetke mnogoobrazii epigrupp”, Tr. In-ta matem. i mekhan. UrO RAN, 22, no. 3, 2016, 244–250 | MR

[7] Shaprynskiǐ V. Yu., Skokov D. V., Vernikov B. M., “Special elements of the lattice of epigroup varieties”, Algebra Univ., 75:3 (2016), 1–30 | DOI | MR

[8] Grätzer G., Lattice theory: foundation, Springer Basel AG, Birkhäuser, 2011 | MR

[9] Šešelja B., Tepavčević A., Weak congruences in universal algebra, Institute of Math., Symbol, Novi Sad, 2001 | MR

[10] Vernikov B. M., “On modular elements of the lattice of semigroup varieties”, Comment. Math. Univ. Carol., 48:4 (2007), 595–606 | MR | Zbl

[11] Gusev S. V., Skokov D. V., Vernikov B. M., Cancellable elements of the lattice of semigroup varieties, arXiv: 1703.03209

[12] Gusev S. V., Vernikov B. M., “Endomorphisms of the lattice of epigroup varieties”, Semigroup Forum, 93:3 (2016), 554–574 | DOI | MR | Zbl

[13] Vernikov B. M., “Upper-modular elements of the lattice of semigroup varieties”, Algebra Univ., 59:3–4 (2008), 405–428 | DOI | MR | Zbl