Derivation of an equation of phenomenological symmetry for some three-dimensional geometries
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main problems of the theory of phenomenologically symmetric (PS) geometries, i.e., geometries of maximum mobility, are their complete classification, the establishing of the fact of existence of their group symmetry, and finding of an equation of the phenomenological symmetry for each of them. A complete classification of three-dimensional PS geometries has been already built. Their PS, i.e., the existence of a functional relation between the values of the metric function for all pairs of five points follows from the rank of the corresponding functional matrix. However, not for all such geometries an equation which expresses the PS is known in the explicit form. The paper describes methods of finding the equations of PS which were applied to some three-dimensional geometries. For each of them we give groups of motions that define the group symmetry of degree six.
Keywords: three-dimensional geometry, phenomenological symmetry (PS), group symmetry, symmetry equivalence, equation of the PS.
@article{IVM_2018_9_a1,
     author = {R. A. Bogdanova and G. G. Mikhailichenko},
     title = {Derivation of an equation of phenomenological symmetry for some three-dimensional geometries},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--20},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/}
}
TY  - JOUR
AU  - R. A. Bogdanova
AU  - G. G. Mikhailichenko
TI  - Derivation of an equation of phenomenological symmetry for some three-dimensional geometries
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 11
EP  - 20
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/
LA  - ru
ID  - IVM_2018_9_a1
ER  - 
%0 Journal Article
%A R. A. Bogdanova
%A G. G. Mikhailichenko
%T Derivation of an equation of phenomenological symmetry for some three-dimensional geometries
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 11-20
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/
%G ru
%F IVM_2018_9_a1
R. A. Bogdanova; G. G. Mikhailichenko. Derivation of an equation of phenomenological symmetry for some three-dimensional geometries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 11-20. http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/

[1] Mikhailichenko G. G., Dvumernye geometrii, BGPU, Barnaul, 2004

[2] Blumental L. M., Theory and application of distance geometry, Oxford Univ. Press, Oxford, 1953 | MR

[3] Mikhailichenko G. G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Sib. matem. zhurn., 25:5 (1984), 99–113 | MR | Zbl

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1973

[5] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sistemy, 125, IM SO AN SSSR, Novosibirsk, 1988, 90–103

[6] Kyrov V. A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zhurn. industr. matem., 13:4 (2010), 38–51 | MR | Zbl

[7] Kyrov V. A., “Funktsionalnye uravneniya v simplekticheskoi geometrii”, Tr. IMM UrO RAN, 16, no. 2, 2010, 149–153

[8] Kyrov V. A., “Ob odnom klasse funktsionalno-differentsialnykh uravnenii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2012, no. 1(26), 31–38 | DOI

[9] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya evklidovoi i psevdoevklidovoi geometrii”, Tr. IMM UrO RAN, 23, no. 2, 2017, 167–181 | MR

[10] Bogdanova R. A., “Gruppy dvizhenii dvumernykh gelmgoltsevykh geometrii kak reshenie funktsionalnogo uravneniya”, Sib. zhurn. industr. matem., 12:4 (2009), 12–22 | MR | Zbl

[11] Bogdanova R. A., “Gruppa dvizhenii simplitsialnoi ploskosti kak reshenie funktsionalnogo uravneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 30:4 (2014), 5–13