Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_9_a1, author = {R. A. Bogdanova and G. G. Mikhailichenko}, title = {Derivation of an equation of phenomenological symmetry for some three-dimensional geometries}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {11--20}, publisher = {mathdoc}, number = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/} }
TY - JOUR AU - R. A. Bogdanova AU - G. G. Mikhailichenko TI - Derivation of an equation of phenomenological symmetry for some three-dimensional geometries JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 11 EP - 20 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/ LA - ru ID - IVM_2018_9_a1 ER -
%0 Journal Article %A R. A. Bogdanova %A G. G. Mikhailichenko %T Derivation of an equation of phenomenological symmetry for some three-dimensional geometries %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 11-20 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/ %G ru %F IVM_2018_9_a1
R. A. Bogdanova; G. G. Mikhailichenko. Derivation of an equation of phenomenological symmetry for some three-dimensional geometries. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 11-20. http://geodesic.mathdoc.fr/item/IVM_2018_9_a1/
[1] Mikhailichenko G. G., Dvumernye geometrii, BGPU, Barnaul, 2004
[2] Blumental L. M., Theory and application of distance geometry, Oxford Univ. Press, Oxford, 1953 | MR
[3] Mikhailichenko G. G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Sib. matem. zhurn., 25:5 (1984), 99–113 | MR | Zbl
[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1973
[5] Lev V. Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychisl. sistemy, 125, IM SO AN SSSR, Novosibirsk, 1988, 90–103
[6] Kyrov V. A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zhurn. industr. matem., 13:4 (2010), 38–51 | MR | Zbl
[7] Kyrov V. A., “Funktsionalnye uravneniya v simplekticheskoi geometrii”, Tr. IMM UrO RAN, 16, no. 2, 2010, 149–153
[8] Kyrov V. A., “Ob odnom klasse funktsionalno-differentsialnykh uravnenii”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2012, no. 1(26), 31–38 | DOI
[9] Kyrov V. A., Mikhailichenko G. G., “Analiticheskii metod vlozheniya evklidovoi i psevdoevklidovoi geometrii”, Tr. IMM UrO RAN, 23, no. 2, 2017, 167–181 | MR
[10] Bogdanova R. A., “Gruppy dvizhenii dvumernykh gelmgoltsevykh geometrii kak reshenie funktsionalnogo uravneniya”, Sib. zhurn. industr. matem., 12:4 (2009), 12–22 | MR | Zbl
[11] Bogdanova R. A., “Gruppa dvizhenii simplitsialnoi ploskosti kak reshenie funktsionalnogo uravneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 30:4 (2014), 5–13