On geodesic curves on quotient manifold of nondegenerate affinor fields
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 52-60
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the quotient manifold of the manifold of nondegenerate affinor fields on a compact manifold with respect to the action of the group of nowhere vanishing functions. This manifold is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection). We also find the geodesics of the Cartan connection.
Keywords:
infinite-dimensional differentiable manifold, Lie algebra, linear connection, left-invariant vector field, one-parameter subgroups of the Lie group, geodesic.
Mots-clés : Lie group, Cartan connection
Mots-clés : Lie group, Cartan connection
@article{IVM_2018_8_a6,
author = {E. M. Romanova},
title = {On geodesic curves on quotient manifold of nondegenerate affinor fields},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {52--60},
year = {2018},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_8_a6/}
}
E. M. Romanova. On geodesic curves on quotient manifold of nondegenerate affinor fields. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 52-60. http://geodesic.mathdoc.fr/item/IVM_2018_8_a6/
[1] Postnikov M. M., Rimanova geometriya. Semestr V, Faktorial, M., 1998
[2] Romanova E. M., “Mnogoobrazie nevyrozhdennykh affinornykh polei”, Izv. vuzov. Matem., 2008, no. 7, 39–45
[3] Romanova E. M., “Svyaznost Kartana i ee geodezicheskie na mnogoobrazii nevyrozhdennykh affinornykh polei”, Izv. vuzov. Matem., 2009, no. 5, 68–72
[4] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, M., 1975 | MR
[5] Burbaki N., Gruppy i algebry Li, gl. III, Mir, M., 1976
[6] Postnikov M. M., Gruppy i algebry Li. Lektsii po geometrii. Semestr V, Nauka, M., 1982 | MR