On symmetric spaces with convergence in measure on reflexive subspaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

A closed subspace $H$ of a symmetric space $X$ on $[0,1]$ is said to be strongly embedded in $X$ if in $H$ a convergence in $X$-norm is equivalent to the convergence in Lebesgue measure. We study symmetric spaces $X$ with the property that all their reflexive subspaces are strongly embedded in $X$. We prove that it is the case for all spaces, which satisfy an analog of the classical Dunford–Pettis theorem of relatively weakly compact subsets in $L_1$. At the same time the converse assertion fails for a wide class of separable Marcinkiewicz spaces.
Keywords: symmetric spaces, reflexive subspace, equicontinuity of norms.
Mots-clés : Marcinkiewicz space
@article{IVM_2018_8_a0,
     author = {S. V. Astashkin and S. I. Strakhov},
     title = {On symmetric spaces with convergence in measure on reflexive subspaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_8_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - S. I. Strakhov
TI  - On symmetric spaces with convergence in measure on reflexive subspaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_8_a0/
LA  - ru
ID  - IVM_2018_8_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A S. I. Strakhov
%T On symmetric spaces with convergence in measure on reflexive subspaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_8_a0/
%G ru
%F IVM_2018_8_a0
S. V. Astashkin; S. I. Strakhov. On symmetric spaces with convergence in measure on reflexive subspaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2018_8_a0/

[1] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR

[2] Albiac F., Kalton N. J., Topics in Banach space theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006 | MR | Zbl

[3] Rudin W., “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227 | MR | Zbl

[4] Blei R., Analysis in integer and fractional dimensions, Cambridge Stud. in Advanced Math., 71, Cambridge Univ. Press, Cambridge, UK, 2001 | MR | Zbl

[5] Bourgain J., “Bounded orthogonal systems and the $\Lambda(p)$-set problem”, Acta Math., 162 (1989), 227–245 | DOI | MR | Zbl

[6] Bachelis G. F., Ebenstein S. E., “On $\Lambda(p)$ sets”, Pacific J. Math., 54:1 (1974), 35–38 | DOI | MR | Zbl

[7] Astashkin S. V., “$\Lambda(p)$-spaces”, J. Funct. Anal., 266 (2014), 5174–5198 | DOI | MR | Zbl

[8] Lavergne E., “Reflexive subspaces of some Orlicz spaces”, Colloquium Math., 113:2 (2008), 333–340 | DOI | MR | Zbl

[9] Alexopoulos J., “De la {V}allée {P}oussin's theorem and weakly compact sets in {O}rlicz spaces”, Quaest. Math., 17:2 (1994), 231–248 | DOI | MR | Zbl

[10] Astashkin S. V., Kalton N. J., Sukochev F. A., “Cesaro mean convergence of martingale differences in rearrangement invariant spaces”, Positivity, 12 (2008), 387–406 | DOI | MR | Zbl

[11] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[12] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Function spaces, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[13] Astashkin S. V., Sistema Rademakhera v funktsionalnykh prostranstvakh, Fizmatlit, M., 2017

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977

[15] Novikov S. Ya., Geometricheskie svoistva simmetrichnykh prostranstv, Diss. ...kand. fiz.-matem. nauk, Voronezh, 1980

[16] Novikov S. Ya., Semenov E. M., Tokarev E. V., “Struktura podprostranstv prostranstv $\Lambda_p(\varphi)$”, DAN SSSR, 247:3 (1979), 552–554 | Zbl

[17] Kadec M. I. Pełczyński A., “Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$”, Studia Math., 21 (1962), 161–176 | DOI | MR | Zbl

[18] Tokarev E. V., “O podprostranstvakh nekotorykh simmetrichnykh prostranstv”, Sb. nauchn. tr., Teor. funkts., funktsional. anal. i ikh prilozh., 24, Kharkov, 1975, 156–161 | Zbl

[19] Novikov S. Ya., “Ob odnoi kharakteristike podprostranstv simmetrichnogo prostranstva”, Issledov. po teor. funkts. mnogikh veschestvennykh peremennykh, Sb. nauchn. tr., Izd-vo Yaroslavsk. gos. un-ta, Yaroslavl, 1980, 140–148