Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_3_a3, author = {M. A. Komarov}, title = {Approximation by linear fractional transformations of simple partial fractions and their differences}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {29--40}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/} }
TY - JOUR AU - M. A. Komarov TI - Approximation by linear fractional transformations of simple partial fractions and their differences JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 29 EP - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/ LA - ru ID - IVM_2018_3_a3 ER -
M. A. Komarov. Approximation by linear fractional transformations of simple partial fractions and their differences. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 29-40. http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/
[1] Danchenko V. I., Danchenko D. Ya., “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI
[2] Kosukhin O. N., “Ob approksimativnykh svoistvakh naiprosteishikh drobei”, Vestn. Moskovsk. un-ta. Ser. 1. Matem., mekhan., 2001, no. 4, 54–58 | MR
[3] Borodin P. A., Kosukhin O. N., “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Moskovsk un-ta. Ser. 1. Matem., mekhan., 2005, no. 1, 3–8 | Zbl
[4] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | DOI | Zbl
[5] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | Zbl
[6] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. sb., 201:7 (2010), 53–66 | DOI | Zbl
[7] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. sb., 202:10 (2011), 87–98 | DOI | Zbl
[8] Danchenko V. I., Kondakova E. N., “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Tr. MIAN, 270, 2010, 86–96 | Zbl
[9] Komarov M. A., “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa”, Izv. RAN. Ser. matem., 79:3 (2015), 3–22 | DOI
[10] Komarov M. A., “Skorost nailuchshego priblizheniya konstant naiprosteishimi drobyami i alternans”, Matem. zametki, 97:5 (2015), 718–732 | DOI | Zbl
[11] Komarov M. A., “O needinstvennosti naiprosteishei drobi nailuchshego ravnomernogo priblizheniya”, Izv. vuzov. Matem., 2013, no. 9, 28–37
[12] Komarov M. A., “Kriterii razreshimosti zadachi kratnoi interpolyatsii posredstvom naiprosteishikh drobei”, Sib. matem. zhurn., 55:4 (2014), 750–763 | MR | Zbl
[13] Borodin P. A., “Approximation by ‘Condenser’”, Tez. dokl. VIII Petrozavodsk. mezhdunarodn. konf. «Kompleksnyi analiz i ego prilozh.» (Petrozavodsk, 3–9 iyulya, 2016), 2016, 10–11
[14] Kondakova E. N., “Interpolyatsiya naiprosteishimi drobyami”, Izv. Saratovsk. un-ta. Ser. Matem., mekhan., informatika, 9:2 (2009), 30–37 | MR
[15] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, GIFML, M., 1962 | MR
[16] Chunaev P., “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl
[17] Gorin E. A., “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zhurn., 3:4 (1962), 500–526 | Zbl
[18] Danchenko V. I., “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | Zbl
[19] Borodin P. A., “Otsenki rasstoyanii do pryamykh i luchei ot polyusov naiprosteishikh drobei, ogranichennykh po norme $L_p$ na etikh mnozhestvakh”, Matem. zametki, 82:6 (2007), 803–810 | DOI | Zbl
[20] Komarov M. A., “Alternance and best uniform approximation of odd functions by simple partial fractions”, Tez. dokl. VIII Petrozavodsk. mezhdunarodn. konf. «Kompleksnyi analiz i ego prilozh.» (Petrozavodsk, 3–9 iyulya, 2016), 2016, 41–46