Approximation by linear fractional transformations of simple partial fractions and their differences
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 29-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We study applications of a property of simple partial fractions such that a difference $f-\rho$, where $\rho$ is a simple partial fraction of order at most $n$, under linear-fractional transformations becomes again a difference of certain function and certain simple partial fraction of order at most $n$ with quadratic weight. We prove a theorem of uniqueness of interpolating simple partial fraction, generalizing known results, and obtain estimates of best uniform approximation of certain functions on real semi-axis $\mathbb{R}^+$. For the first time, for continuous functions of rather common type we obtain estimates of best approximation by differences of simple partial fractions on $\mathbb{R}^+$, and for odd functions on all axis $\mathbb{R}$.
Keywords:
simple partial fraction, linear-fractional transformation, best approximation, estimate, quadratic weight, differences of simple partial fractions.
Mots-clés : interpolation, semi-axis
Mots-clés : interpolation, semi-axis
@article{IVM_2018_3_a3,
author = {M. A. Komarov},
title = {Approximation by linear fractional transformations of simple partial fractions and their differences},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {29--40},
publisher = {mathdoc},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/}
}
TY - JOUR AU - M. A. Komarov TI - Approximation by linear fractional transformations of simple partial fractions and their differences JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 29 EP - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/ LA - ru ID - IVM_2018_3_a3 ER -
M. A. Komarov. Approximation by linear fractional transformations of simple partial fractions and their differences. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 29-40. http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/