Approximation by linear fractional transformations of simple partial fractions and their differences
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 29-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study applications of a property of simple partial fractions such that a difference $f-\rho$, where $\rho$ is a simple partial fraction of order at most $n$, under linear-fractional transformations becomes again a difference of certain function and certain simple partial fraction of order at most $n$ with quadratic weight. We prove a theorem of uniqueness of interpolating simple partial fraction, generalizing known results, and obtain estimates of best uniform approximation of certain functions on real semi-axis $\mathbb{R}^+$. For the first time, for continuous functions of rather common type we obtain estimates of best approximation by differences of simple partial fractions on $\mathbb{R}^+$, and for odd functions on all axis $\mathbb{R}$.
Keywords: simple partial fraction, linear-fractional transformation, best approximation, estimate, quadratic weight, differences of simple partial fractions.
Mots-clés : interpolation, semi-axis
@article{IVM_2018_3_a3,
     author = {M. A. Komarov},
     title = {Approximation by linear fractional transformations of simple partial fractions and their differences},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--40},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Approximation by linear fractional transformations of simple partial fractions and their differences
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 29
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/
LA  - ru
ID  - IVM_2018_3_a3
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Approximation by linear fractional transformations of simple partial fractions and their differences
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 29-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/
%G ru
%F IVM_2018_3_a3
M. A. Komarov. Approximation by linear fractional transformations of simple partial fractions and their differences. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 29-40. http://geodesic.mathdoc.fr/item/IVM_2018_3_a3/

[1] Danchenko V. I., Danchenko D. Ya., “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI

[2] Kosukhin O. N., “Ob approksimativnykh svoistvakh naiprosteishikh drobei”, Vestn. Moskovsk. un-ta. Ser. 1. Matem., mekhan., 2001, no. 4, 54–58 | MR

[3] Borodin P. A., Kosukhin O. N., “O priblizhenii naiprosteishimi drobyami na deistvitelnoi osi”, Vestn. Moskovsk un-ta. Ser. 1. Matem., mekhan., 2005, no. 1, 3–8 | Zbl

[4] Borodin P. A., “Priblizhenie naiprosteishimi drobyami na poluosi”, Matem. sb., 200:8 (2009), 25–44 | DOI | Zbl

[5] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | Zbl

[6] Danchenko V. I., “O skhodimosti naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. sb., 201:7 (2010), 53–66 | DOI | Zbl

[7] Kayumov I. R., “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb{R})$”, Matem. sb., 202:10 (2011), 87–98 | DOI | Zbl

[8] Danchenko V. I., Kondakova E. N., “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Tr. MIAN, 270, 2010, 86–96 | Zbl

[9] Komarov M. A., “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa”, Izv. RAN. Ser. matem., 79:3 (2015), 3–22 | DOI

[10] Komarov M. A., “Skorost nailuchshego priblizheniya konstant naiprosteishimi drobyami i alternans”, Matem. zametki, 97:5 (2015), 718–732 | DOI | Zbl

[11] Komarov M. A., “O needinstvennosti naiprosteishei drobi nailuchshego ravnomernogo priblizheniya”, Izv. vuzov. Matem., 2013, no. 9, 28–37

[12] Komarov M. A., “Kriterii razreshimosti zadachi kratnoi interpolyatsii posredstvom naiprosteishikh drobei”, Sib. matem. zhurn., 55:4 (2014), 750–763 | MR | Zbl

[13] Borodin P. A., “Approximation by ‘Condenser’”, Tez. dokl. VIII Petrozavodsk. mezhdunarodn. konf. «Kompleksnyi analiz i ego prilozh.» (Petrozavodsk, 3–9 iyulya, 2016), 2016, 10–11

[14] Kondakova E. N., “Interpolyatsiya naiprosteishimi drobyami”, Izv. Saratovsk. un-ta. Ser. Matem., mekhan., informatika, 9:2 (2009), 30–37 | MR

[15] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, GIFML, M., 1962 | MR

[16] Chunaev P., “Least deviation of logarithmic derivatives of algebraic polynomials from zero”, J. Approx. Theory, 185 (2014), 98–106 | DOI | MR | Zbl

[17] Gorin E. A., “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zhurn., 3:4 (1962), 500–526 | Zbl

[18] Danchenko V. I., “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | Zbl

[19] Borodin P. A., “Otsenki rasstoyanii do pryamykh i luchei ot polyusov naiprosteishikh drobei, ogranichennykh po norme $L_p$ na etikh mnozhestvakh”, Matem. zametki, 82:6 (2007), 803–810 | DOI | Zbl

[20] Komarov M. A., “Alternance and best uniform approximation of odd functions by simple partial fractions”, Tez. dokl. VIII Petrozavodsk. mezhdunarodn. konf. «Kompleksnyi analiz i ego prilozh.» (Petrozavodsk, 3–9 iyulya, 2016), 2016, 41–46