Vector hamiltonians in Nambu mechanics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 32-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a generalization of the Nambu mechanics based on vector hamiltonians theory. It is shown that any divergence-free phase flow in $\mathbb{R}^n$ can be represented as a generalized Nambu mechanics with $n-1$ integral invariant. For the case when the phase flow in $\mathbb{R}^ n$ has $n-3$ or less first integrals, we introduce the Cartan concept of mechanics. We give an example the fifth integral invariant of Euler top.
Keywords: first integrals, integral invariants, splitting cohomology.
@article{IVM_2018_2_a3,
     author = {V. N. Dumachev},
     title = {Vector hamiltonians in {Nambu} mechanics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {32--38},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a3/}
}
TY  - JOUR
AU  - V. N. Dumachev
TI  - Vector hamiltonians in Nambu mechanics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 32
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a3/
LA  - ru
ID  - IVM_2018_2_a3
ER  - 
%0 Journal Article
%A V. N. Dumachev
%T Vector hamiltonians in Nambu mechanics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 32-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a3/
%G ru
%F IVM_2018_2_a3
V. N. Dumachev. Vector hamiltonians in Nambu mechanics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 32-38. http://geodesic.mathdoc.fr/item/IVM_2018_2_a3/

[1] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7:8 (1973), 5405–5412 | DOI | MR

[2] Shafarevich A. I., Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007 | MR

[3] Dumachev V. N., “Fazovye potoki i vektornye gamiltoniany”, Izv. vuzov. Matem., 2011, no. 3, 3–9

[4] Kozlov V. V., Integralnye invarianty posle Puankare i Kartana, URSS, M., 1998

[5] Dumachev V. N., “O tochnykh differentsialnykh formakh”, Vestn. VGU. Ser.: fizika, matem., 2 (2010), 73–77

[6] Gorieli A., Integriruemost i singulyarnost, RKhD, M., 2006

[7] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela, RKhD, M., 2001