Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_2_a1, author = {S. A. Grigoryan and A. Yu. Kuznetsova}, title = {$C^*$-algebras generated by mappings. {Criterion} of irreducibility}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--22}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a1/} }
TY - JOUR AU - S. A. Grigoryan AU - A. Yu. Kuznetsova TI - $C^*$-algebras generated by mappings. Criterion of irreducibility JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 10 EP - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_2_a1/ LA - ru ID - IVM_2018_2_a1 ER -
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-algebras generated by mappings. Criterion of irreducibility. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 10-22. http://geodesic.mathdoc.fr/item/IVM_2018_2_a1/
[1] Murray F. J., von Newmann J., “On rings of operators”, Ann. Math., 37 (1936), 116–229 | DOI | MR
[2] Arveson W., “Operator algebras and measure preserving automorphisms”, Acta Math., 118:1–2 (1967), 95–105 | DOI | MR
[3] Dye H., “On group of measure preserving transformations. I”, Amer. J. Math., 81:1 (1959), 119–159 | DOI | MR | Zbl
[4] Dye H., “On group of measure preserving transformations. II”, Amer. J. Math., 85:4 (1963), 551–576 | DOI | MR | Zbl
[5] Krieger W., “On non-singular transformations of a mesure space. I, II”, Z. Wahr. verw. Geb., 11 (1969), 83–119 | DOI | MR | Zbl
[6] Krieger W., “On ergodic flows and isomorphisms of factors”, Math. Annal., 223 (1976), 19–70 | DOI | MR | Zbl
[7] Arzumanyan V. A., Vershik A. M., “Faktor-predstavleniya skreschennogo proizvedeniya kommutativnoi $C^*$-algebry i polugruppy ee endomorfizmov”, DAN SSSR, 238:3 (1978), 513–516 | Zbl
[8] Arzumanyan V. A., “Operatornye algebry, assotsiirovannye s nesingulyarnymi endomorfizmami prostranstva Lebega”, Izv. AN Armyansk. SSR, 21:6 (1986), 596–616 | MR
[9] Deacony V., “Grouppoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347 (1995), 1779–1786 | DOI | MR
[10] Renault J., “Cuntz-like algebras”, Operator theoretical methods, Proceedings of the 17th international conference on operator theory (Timisoara, Romania, 1998), The Theta Found., Bucharest, 2000, 371–386 | MR | Zbl
[11] Exel R., Vershik A., $C^{*}$-algebras of irreversible dynamical systems, 2002, arXiv: math/0203185v1 [math.OA] | MR
[12] Grigoryan S., Kuznetsova A., “$C^{*}$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl
[13] Grigoryan S. A., Kuznetsova A. Yu., “$C^{*}$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | DOI | Zbl
[14] Cuntz J., “On the simple $C^{*}$-algebras generated by isometries”, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[15] Cuntz J., Krieger W., “A class of $C^{*}$-algebras and topological Markov chains”, Invent. Math., 56:3 (1980), 251–268 | DOI | MR | Zbl
[16] Pimsner M. V., “A class of $C^{*}$-algebras generalizing both Cuntz–Krieger algebras and crossed products by $\mathbb{Z}$”, Fields Inst. Commun., 12 (1997), 189–212 | MR | Zbl
[17] Nica A., “$C^{*}$-algebras generated by isometries and Wiener–Hopf operators”, J. Operator Theory, 27 (1992), 17–52 | MR | Zbl
[18] Matsumoto K., “Relation among generators of $C^{*}$-algebras associated with subshifts”, Internat. J. Math., 10 (1999), 385–405 | DOI | MR | Zbl
[19] Exel R., Laca M., Quigg J., Partial dynamical systems and $C^{*}$-algebras generated by partial isometries, arXiv: funct-an/9712007
[20] Kuznetsova A. Yu., “Ob odnom klasse operatornykh algebr, porozhdennykh semeistvom chastichnykh izometrii”, Zap. nauchn. semin. POMI, 437, 2015, 131–144
[21] Grigoryan S. A., Kuznetsova A. Yu., Patrin E. V., “Ob odnom kriterii neprivodimosti algebry $C^*_{\varphi}(X)$”, Izv. NAN Armenii. Matem., 49:1 (2014), 75–82
[22] Grigoryan S., Kuznetsova A., “On a class of nuclear $C^{*}$-algebras”, An operator theory summer, Proceedings of the 23rd international conference on operator theory (Timisoara, Romania, 2010), The Theta Found., Bucharest, 2012, 39–50 | MR
[23] Grigoryan S., Kuznetsova A., “Torus action on $C^{*}$-algebra”, The varied landscape of operator theory, Proceedings of the 24th international conference on operator theory (Timisoara, Romania, 2012), The Theta Found., Bucharest, 2014, 127–136 | MR
[24] Kuznetsova A. Yu., “Ob odnom klasse $C^{*}$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:6 (2010), 51–62 | MR | Zbl
[25] Coburn L., “The $C^{*}$-algebra generated by an isometry. I”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl
[26] Coburn L., “The $C^{*}$-algebra generated by an isometry. II”, Trans. Amer. Math. Soc., 137 (1969), 211–217 | MR | Zbl