Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development of approximative approach to the construction of solutions to boundary-value problems for quasilinear elliptic equations on arbitrary noncompact Riemannian manifolds. Methods of studies essentially rely on an approach based on the introduction of equivalence classes of functions on Riemannian manifold (papers of E. Mazepa and S. Korol'kov). It also summarizes the methodology for constructing a generalized solution to the Dirichlet problem for linear elliptic equations in bounded domains of $\mathbb{R}^n$ (papers of M. Keldysh and E. Landis).
Keywords: quasilinear elliptic equations, noncompact Riemannian manifolds, boundary-value problem, approximation approach, generalized solutions.
@article{IVM_2018_1_a6,
     author = {E. A. Mazepa},
     title = {Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--66},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a6/}
}
TY  - JOUR
AU  - E. A. Mazepa
TI  - Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 57
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_1_a6/
LA  - ru
ID  - IVM_2018_1_a6
ER  - 
%0 Journal Article
%A E. A. Mazepa
%T Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 57-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_1_a6/
%G ru
%F IVM_2018_1_a6
E. A. Mazepa. Generalized solutions of boundary-value problems for quasilinear elliptic equation on noncompact Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 57-66. http://geodesic.mathdoc.fr/item/IVM_2018_1_a6/

[1] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Per. s angl., Nauka, M., 1989

[2] Keldysh M. V., Izbrannye trudy. Matematika, Nauka, M., 1985

[3] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971

[4] Mazepa E. A., “Ob asimptoticheskom povedenii reshenii nekotorykh polulineinykh ellipticheskikh uravnenii na nekompaktnykh rimanovykh mnogoobraziyakh”, Vestn. Volgogradsk. gos. un-ta. Ser. 1, Matem. Fizika, 14:1 (2011), 41–59 | Zbl

[5] Anderson M. T., Schoen R., “Positive harmonic functions on complete manifolds of negative curvature”, Ann. Math., 121:3 (1985), 429–461 | DOI | MR | Zbl

[6] Losev A. G., Mazepa E. A., “Ob asimptoticheskom povedenii reshenii nekotorykh uravnenii ellipticheskogo tipa na nekompaktnykh rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 1999, no. 6, 41–49

[7] Losev A. G., Mazepa E. A., “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110

[8] Mazepa E. A., “Kraevye zadachi dlya statsionarnogo uravneniya Shredingera na rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 43:3 (2002), 591–599 | Zbl

[9] Mazepa E. A., “Kraevye zadachi i liuvillevy teoremy dlya polulineinykh ellipticheskikh uravnenii na rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 2005, no. 3, 59–66

[10] Korolkov S. A., “O razreshimosti kraevykh zadach dlya statsionarnogo uravneniya Shredingera v neogranichennykh oblastyakh rimanovykh mnogoobrazii”, Differents. uravneniya, 51:6 (2015), 726–732 | DOI | MR | Zbl

[11] Gulmanova E. A., Klyachin A. A., Mazepa E. A., “Obobschennye resheniya zadachi Dirikhle dlya uravneniya Shredingera na nekompaktnykh rimanovykh mnogoobraziya”, Vestn. Volgogradsk. gos. un-ta. Ser. 1, Matem. Fizika, 13:1 (2010), 36–40