Generalized absolute convergence of series from Fourier coeficients by systems of Haar type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 10-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

For orthogonal systems of Haar type introduced by N.Ya. Vilenkin in 1958 we study absolute convergence of series from Fourier coefficients raised to a positive power with multiplicators from Gogoladze–Meskhia class. The conditions for convergence of the series mentioned above are given in terms of best approximations of functions in $L^p$ spaces by polynomials with respect to Haar type systems or in terms of fractional modulus of continuity of functions from Wiener spaces $V_p$, $p>1$. We establish the sharpness of obtained results.
Keywords: Haar type system, $L^p$ space, functions of bounded $p$-variation, best approximation, modulus of continuity.
Mots-clés : Fourier coefficients
@article{IVM_2018_1_a1,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Generalized absolute convergence of series from {Fourier} coeficients by systems of {Haar} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--20},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Generalized absolute convergence of series from Fourier coeficients by systems of Haar type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 10
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/
LA  - ru
ID  - IVM_2018_1_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Generalized absolute convergence of series from Fourier coeficients by systems of Haar type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 10-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/
%G ru
%F IVM_2018_1_a1
S. S. Volosivets; B. I. Golubov. Generalized absolute convergence of series from Fourier coeficients by systems of Haar type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 10-20. http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/

[1] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958

[2] Golubov B. I., “Ob odnom klasse polnykh ortogonalnykh sistem”, Sib. matem. zhurn., 9:2 (1968), 297–314 | MR | Zbl

[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987

[4] Golubov B. I., Rubinshtein A. I., “Ob odnom klasse sistem skhodimosti”, Matem. sb., 71:1 (1966), 93–112

[5] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187

[6] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3 (1924), 72–94 | DOI | Zbl

[7] Young L. C., “An inequality of the Hölder type, connected with Stielties integration”, Acta math., 67:1 (1936), 251–282 | DOI | MR

[8] Gogoladze L. D., “Ravnomernaya silnaya summiruemost kratnykh trigonometricheskikh ryadov”, Dokl. rasshir. zased. seminara in-ta prikl. matem. im. I. N. Vekua (Tbilisi), 1, no. 2, 1985, 48–51; 179

[9] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl

[10] Ulyanov P. L., “O ryadakh po sisteme Khaara s monotonnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 925–950 | Zbl

[11] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Moskovsk. matem. o-va, 5, 1956, 483–522 | Zbl

[12] Volosivets S. S., Skorynskaya O. S., “O priblizhenii funktsii ogranichennoi $p$-variatsii polinomami po sistemam Khaara–Vilenkina”, Anal. Math., 31:3 (2005), 195–215 | DOI | MR | Zbl

[13] Golubov B. I., Volosivets S. S., “Absolute convergence of the series of Fourier–Haar coefficients”, Sampl. Theory Signal Image Processing, 13:2 (2014), 125–150 | MR

[14] Golubov B. I., “Nailuchshie priblizheniya funktsii v metrike $L_p$ polinomami Khaara i Uolsha”, Matem. sb., 87:2 (1972), 254–274 | Zbl

[15] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl