Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_1_a1, author = {S. S. Volosivets and B. I. Golubov}, title = {Generalized absolute convergence of series from {Fourier} coeficients by systems of {Haar} type}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--20}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/} }
TY - JOUR AU - S. S. Volosivets AU - B. I. Golubov TI - Generalized absolute convergence of series from Fourier coeficients by systems of Haar type JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 10 EP - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/ LA - ru ID - IVM_2018_1_a1 ER -
%0 Journal Article %A S. S. Volosivets %A B. I. Golubov %T Generalized absolute convergence of series from Fourier coeficients by systems of Haar type %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 10-20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/ %G ru %F IVM_2018_1_a1
S. S. Volosivets; B. I. Golubov. Generalized absolute convergence of series from Fourier coeficients by systems of Haar type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 10-20. http://geodesic.mathdoc.fr/item/IVM_2018_1_a1/
[1] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958
[2] Golubov B. I., “Ob odnom klasse polnykh ortogonalnykh sistem”, Sib. matem. zhurn., 9:2 (1968), 297–314 | MR | Zbl
[3] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987
[4] Golubov B. I., Rubinshtein A. I., “Ob odnom klasse sistem skhodimosti”, Matem. sb., 71:1 (1966), 93–112
[5] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187
[6] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3 (1924), 72–94 | DOI | Zbl
[7] Young L. C., “An inequality of the Hölder type, connected with Stielties integration”, Acta math., 67:1 (1936), 251–282 | DOI | MR
[8] Gogoladze L. D., “Ravnomernaya silnaya summiruemost kratnykh trigonometricheskikh ryadov”, Dokl. rasshir. zased. seminara in-ta prikl. matem. im. I. N. Vekua (Tbilisi), 1, no. 2, 1985, 48–51; 179
[9] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl
[10] Ulyanov P. L., “O ryadakh po sisteme Khaara s monotonnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 925–950 | Zbl
[11] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Moskovsk. matem. o-va, 5, 1956, 483–522 | Zbl
[12] Volosivets S. S., Skorynskaya O. S., “O priblizhenii funktsii ogranichennoi $p$-variatsii polinomami po sistemam Khaara–Vilenkina”, Anal. Math., 31:3 (2005), 195–215 | DOI | MR | Zbl
[13] Golubov B. I., Volosivets S. S., “Absolute convergence of the series of Fourier–Haar coefficients”, Sampl. Theory Signal Image Processing, 13:2 (2014), 125–150 | MR
[14] Golubov B. I., “Nailuchshie priblizheniya funktsii v metrike $L_p$ polinomami Khaara i Uolsha”, Matem. sb., 87:2 (1972), 254–274 | Zbl
[15] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl