Nonautonomous bounded remainder sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 94-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonautonomous bounded remainder sets are sequences of sets admitting a uniform estimate of the remainder term in the distribution of the fractional parts of linear function problem. In the paper we give a complete description of nonautonomous bounded remainder sets in the case of periodic sequences. The result is also generalized to certain classes of quasiperiodic sequences of sets. The proofs are based on obtaining explicit formulas for the remainder term in the terms of sums of fractional parts. The method is effective, i. e., it allows us to obtain explicit estimates of the remainder term.
Keywords: uniform distribution, bounded remainder set, sums of fractional parts.
@article{IVM_2018_12_a6,
     author = {A. V. Shutov},
     title = {Nonautonomous bounded remainder sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--101},
     publisher = {mathdoc},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a6/}
}
TY  - JOUR
AU  - A. V. Shutov
TI  - Nonautonomous bounded remainder sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 94
EP  - 101
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_12_a6/
LA  - ru
ID  - IVM_2018_12_a6
ER  - 
%0 Journal Article
%A A. V. Shutov
%T Nonautonomous bounded remainder sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 94-101
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_12_a6/
%G ru
%F IVM_2018_12_a6
A. V. Shutov. Nonautonomous bounded remainder sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 94-101. http://geodesic.mathdoc.fr/item/IVM_2018_12_a6/

[1] Weyl H., “Über die Gleichverteilung von Zahlen mod Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[2] Pinner C. G., “On sums of fractional parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65:1 (1997), 48–73 | DOI | MR | Zbl

[3] Roçadas L., Schoißengeier J., “On the local discrepancy of $(n\alpha)$-sequences”, J. Number Theory, 131:8 (2011), 1492–1497 | DOI | MR

[4] Shutov A. V., “Lokalnye otkloneniya v probleme raspredeleniya drobnykh dolei lineinoi funktsii”, Izv. vuzov. Matem., 2017, no. 2, 88–97

[5] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Math. Sem. Hamburg Univ., 5 (1921), 54–76 | MR

[6] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution $\mod 1$”, Acta Arithmetica, 12 (1966), 193–212 | DOI | MR | Zbl

[7] Shutov A. V., “Optimalnye otsenki v probleme raspredeleniya drobnykh dolei na mnozhestvakh ogranichennogo ostatka”, Vestn. SamGU. Estestv. ser., 2007, no. 7 (57), 168–175

[8] Krasilschikov V. V., Shutov A. V., “Opisanie i tochnye znacheniya maksimuma i minimuma ostatochnogo chlena problemy raspredeleniya drobnykh dolei”, Matem. zametki, 89:1 (2011), 43–52 | DOI | Zbl

[9] Oren I., “Admissible functions with multiple discontinioutes”, Israel J. Math., 42:4 (1982), 353–360 | DOI | MR | Zbl

[10] Shutov A. V., “Problema Gekke–Kestena dlya neskolkikh intervalov”, Chebyshevsk. sb., 12:1 (2011), 177–182

[11] Zhuravlev V. G., “Mnozhestva ogranichennogo ostatka”, Zapiski nauchn. sem. POMI, 445, 2016, 93–174

[12] Morse M., Hedlund G. A., “Symbolic dynamics II. Sturmian trajectories”, Amer. J. Math., 62:1 (1940), 1–42 | DOI | MR