Darboux system as three-dimensional analog of Liouville equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problems of the connections of the modern theory of integrability and the corresponding overdetermined linear systems with works of geometers of the late nineteenth century. One of these questions is the generalization of the theory of Darboux–Laplace transforms for second-order equations with two independent variables to the case of three-dimensional linear hyperbolic equations of the third order. In this paper we construct examples of such transformations. We consider applications to the problem of orthogonal curvilinear coordinate systems in $\mathbb{R}^3$.
Keywords: Darboux system, integrable systems, third-order hyperbolic equation.
Mots-clés : Goursat problem
@article{IVM_2018_12_a3,
     author = {R. Ch. Kulaev and A. K. Pogrebkov and A. B. Shabat},
     title = {Darboux system as three-dimensional analog of {Liouville} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--69},
     publisher = {mathdoc},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. K. Pogrebkov
AU  - A. B. Shabat
TI  - Darboux system as three-dimensional analog of Liouville equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 60
EP  - 69
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/
LA  - ru
ID  - IVM_2018_12_a3
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. K. Pogrebkov
%A A. B. Shabat
%T Darboux system as three-dimensional analog of Liouville equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 60-69
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/
%G ru
%F IVM_2018_12_a3
R. Ch. Kulaev; A. K. Pogrebkov; A. B. Shabat. Darboux system as three-dimensional analog of Liouville equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 60-69. http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/

[1] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl

[2] Rogers C., Schief W. K., Bäcklund and Darboux transformations: geometry and modern application in soliton theory, Cambridge Univ. Press, Cambridge, 2002 | MR

[3] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44 (1989), 29–98 | Zbl

[4] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and hamiltonian integrable systems of hydrodynamic type. Part 1. Integration of the Lame equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[5] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Kessinger Publ., LLC, 2010 | MR

[6] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | DOI | MR | Zbl

[7] Zhegalov V. I., Mironov A. I., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazan, 2001

[8] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | Zbl

[9] Drach U., “Sur l'integration par quadratures de l'equation differentielle $y''=[\varphi(x)+h] y$”, Compt. Rend. Acad. Sci., 168 (1919), 337–340 | MR | Zbl

[10] Pogrebkov A. K., “Symmetries of the Hirota difference equation”, SIGMA, 13 (2017), 053, 14 pp. | DOI | MR | Zbl