Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_12_a3, author = {R. Ch. Kulaev and A. K. Pogrebkov and A. B. Shabat}, title = {Darboux system as three-dimensional analog of {Liouville} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {60--69}, publisher = {mathdoc}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/} }
TY - JOUR AU - R. Ch. Kulaev AU - A. K. Pogrebkov AU - A. B. Shabat TI - Darboux system as three-dimensional analog of Liouville equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 60 EP - 69 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/ LA - ru ID - IVM_2018_12_a3 ER -
R. Ch. Kulaev; A. K. Pogrebkov; A. B. Shabat. Darboux system as three-dimensional analog of Liouville equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 60-69. http://geodesic.mathdoc.fr/item/IVM_2018_12_a3/
[1] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl
[2] Rogers C., Schief W. K., Bäcklund and Darboux transformations: geometry and modern application in soliton theory, Cambridge Univ. Press, Cambridge, 2002 | MR
[3] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44 (1989), 29–98 | Zbl
[4] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and hamiltonian integrable systems of hydrodynamic type. Part 1. Integration of the Lame equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[5] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Kessinger Publ., LLC, 2010 | MR
[6] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego prilozh., 31:1 (1997), 32–50 | DOI | MR | Zbl
[7] Zhegalov V. I., Mironov A. I., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazan, 2001
[8] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | Zbl
[9] Drach U., “Sur l'integration par quadratures de l'equation differentielle $y''=[\varphi(x)+h] y$”, Compt. Rend. Acad. Sci., 168 (1919), 337–340 | MR | Zbl
[10] Pogrebkov A. K., “Symmetries of the Hirota difference equation”, SIGMA, 13 (2017), 053, 14 pp. | DOI | MR | Zbl