Modular sesquilinear forms and generalized Stinspring representation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 50-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider completely positive maps defined on locally $C^{\ast}$-algebra and taking values in the space of sesquilinear forms on Hilbert $C^{\ast}$-module $\mathcal{M}$. We construct the Stinspring type representation for this type of maps and show that any two minimal Stinspring representations are unitarily equivalent.
Keywords: Hilbert $C^\ast$-module, locally $C^{\ast}$-algebra, sesquilinear form, completely positive map, positive definite kernel, Stinspring's representation.
Mots-clés : $\ast$-homomorphism
@article{IVM_2018_12_a2,
     author = {A. V. Kalinichenko and I. N. Maliev and M. A. Pliev},
     title = {Modular sesquilinear forms and generalized {Stinspring} representation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--59},
     publisher = {mathdoc},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/}
}
TY  - JOUR
AU  - A. V. Kalinichenko
AU  - I. N. Maliev
AU  - M. A. Pliev
TI  - Modular sesquilinear forms and generalized Stinspring representation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 50
EP  - 59
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/
LA  - ru
ID  - IVM_2018_12_a2
ER  - 
%0 Journal Article
%A A. V. Kalinichenko
%A I. N. Maliev
%A M. A. Pliev
%T Modular sesquilinear forms and generalized Stinspring representation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 50-59
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/
%G ru
%F IVM_2018_12_a2
A. V. Kalinichenko; I. N. Maliev; M. A. Pliev. Modular sesquilinear forms and generalized Stinspring representation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 50-59. http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/