Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_12_a2, author = {A. V. Kalinichenko and I. N. Maliev and M. A. Pliev}, title = {Modular sesquilinear forms and generalized {Stinspring} representation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {50--59}, publisher = {mathdoc}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/} }
TY - JOUR AU - A. V. Kalinichenko AU - I. N. Maliev AU - M. A. Pliev TI - Modular sesquilinear forms and generalized Stinspring representation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 50 EP - 59 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/ LA - ru ID - IVM_2018_12_a2 ER -
%0 Journal Article %A A. V. Kalinichenko %A I. N. Maliev %A M. A. Pliev %T Modular sesquilinear forms and generalized Stinspring representation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 50-59 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/ %G ru %F IVM_2018_12_a2
A. V. Kalinichenko; I. N. Maliev; M. A. Pliev. Modular sesquilinear forms and generalized Stinspring representation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 50-59. http://geodesic.mathdoc.fr/item/IVM_2018_12_a2/
[1] Asadi M. D., “Stinspring's theorem for Hilbert $C^{*}$-modules”, J. Operator Theory, 62:2 (2009), 235–238 | MR | Zbl
[2] Bhat R., Ramesh G., Sumesh K., “Stinspring's theorem for maps on Hilbert $C^{*}$-modules”, J. Operator Theory, 68:1 (2012), 173–178 | MR | Zbl
[3] Joita M., “Covariant version of the Stinespring type theorem for Hilbert $C^{*}$-modules”, Open Math., 9:4 (2011), 803–813 | MR | Zbl
[4] Masaev H. M., Pliev M. A., Elsaev Y. V., “The Radon–Nikodym type theorem for a covariant completely positive maps on Hilbert C*-modules”, Int. J. of Math. Anal., 9:35 (2015), 1723–1731 | MR
[5] Moslehian M. S., Kusraev A., Pliev M., “Matrix KSGNS construction and a Radon–Nikodym type theorem”, Indag. Math., 28:5 (2017), 938–952 | DOI | MR | Zbl
[6] Skeide M., Sumesh K., “$CP$-$H$-extendable maps between Hilbert modules and $CPH$-semigroups”, J. Math. Anal. Appl., 414 (2014), 886–913 | DOI | MR | Zbl
[7] Maliev I. N., Pliev M. A., “O predstavlenii tipa Stainspringa dlya operatorov v gilbertovykh modulyakh nad lokalnymi $C^{*}$-algebrami”, Izv. vuzov. Matem., 2012, no. 12, 51–58
[8] Pliev M. A., Tsopanov I. D., “O predstavlenii tipa Stainspringa dlya $n$-naborov vpolne polozhitelnykh otobrazhenii v gilbertovykh $C^*$-modulyakh”, Izv. vuzov. Matem., 2014, no. 11, 42–49
[9] Stinspring F., “Positive functions on $C^{\ast}$-algebras”, Proc. Amer. Math. Soc., 2 (1955), 211–216 | MR
[10] Hytonen T., Pellonpaa J. P., Ylinen K., “Positive sesquilinear form measures and generalized eigenvalue expansions”, J. Math. Anal. Appl., 336 (2007), 1287–1304 | DOI | MR | Zbl
[11] Pellonpaa J. P., Ylinen K., “Modules, completely positive maps, and a generalized KSGNS construction”, Positivity, 15:3 (2011), 509–525 | DOI | MR | Zbl
[12] Dubin D. A., Kiukas J., Pellonpaa J. P., Ylinen K., “Operator integrals and sesquilinear forms”, J. Math. Anal. Appl., 413 (2014), 250–268 | DOI | MR | Zbl
[13] Manuilov V. M., Troitskii E. V., $C^{*}$-gilbertovy moduli, Faktorial, M., 2001
[14] Merfi D., $C^{*}$-algebry i teoriya operatorov, Faktorial, M., 1997
[15] Lance E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, Cambridge Univ. Press, 1995 | MR
[16] Fragoulopoulou M., Topological algebras with involution, Elsevier, 2005 | MR | Zbl
[17] Joiţa M., Hilbert modules over locally $C^{*}$-algebras, Univ. of Bucharest Press, 2006 | MR
[18] Murphy G. J., “Positive definite kernels and Hilbert $C^*$-modules”, Proc. Edinburgh Math. Soc., 40 (1997), 367–374 | DOI | MR | Zbl