Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_11_a4, author = {V. I. Panzhenskii and T. R. Klimova}, title = {The contact metric connection on the {Heisenberg} group}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {51--59}, publisher = {mathdoc}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/} }
V. I. Panzhenskii; T. R. Klimova. The contact metric connection on the Heisenberg group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 51-59. http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/
[1] Skott P., Geometriya na trekhmernykh mnogoobraziyakh, Mir, M., 1986
[2] Gonzalez J. C., Chinea D., “Quasi-Sasakian homogeneous structures on the generalized Heisenberg group $H(p,1)$”, Proc. Amer. Math. Soc., 105:1 (1989), 173–184 | MR | Zbl
[3] Binz E., Podc S., Geometry of Heisenberg groups, Amer. Math. Soc., 2008 | MR | Zbl
[4] Boyer C. P., The Sasakian geometry of the Heisenberg group, Albuquerque, 2009 | MR
[5] Tanno S., “The automorphism groups of almost contact Riemannian manifolds”, Tô hoku Math. J. (2), 21:1 (1969), 21–38 | DOI | MR | Zbl
[6] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy-7, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundament. napravleniya, 16, VINITI, M., 1987, 5–85
[7] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and sub-Riemannian geometry, SISSA, Italy, 2012
[8] Sachkov Yu. L., “Teoriya upravleniya na gruppakh Li”, Sovremen. matem. Fundament. napravleniya, 26, 2008, 5–59
[9] Agrachev A. A., “Nekotorye voprosy subrimanovoi geometrii”, UMN, 71:6 (2016), 3–36 | DOI | MR | Zbl
[10] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes Math., 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[11] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, “Pechatnyi Dom”, Odessa, 2013
[12] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure. I”, Tô hoku Math. J. (2), 12:3 (1960), 459–476 | DOI | MR | Zbl