The contact metric connection on the Heisenberg group
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 51-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there is only one contact metric connection with skew-torsion on the Heisenberg group endowed with a left-invariant Sasakian structure. We obtain the expression of this connection through the contact form and the metric tensor and show that the torsion tensor and the curvature tensor are constant and the sectional curvature varies between $-1$ and $0$.
Keywords: Heisenberg group, Sasakian structure, connection with skew-torsion, sectional curvature.
@article{IVM_2018_11_a4,
     author = {V. I. Panzhenskii and T. R. Klimova},
     title = {The contact metric connection on the {Heisenberg} group},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--59},
     publisher = {mathdoc},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/}
}
TY  - JOUR
AU  - V. I. Panzhenskii
AU  - T. R. Klimova
TI  - The contact metric connection on the Heisenberg group
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 51
EP  - 59
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/
LA  - ru
ID  - IVM_2018_11_a4
ER  - 
%0 Journal Article
%A V. I. Panzhenskii
%A T. R. Klimova
%T The contact metric connection on the Heisenberg group
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 51-59
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/
%G ru
%F IVM_2018_11_a4
V. I. Panzhenskii; T. R. Klimova. The contact metric connection on the Heisenberg group. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2018), pp. 51-59. http://geodesic.mathdoc.fr/item/IVM_2018_11_a4/

[1] Skott P., Geometriya na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[2] Gonzalez J. C., Chinea D., “Quasi-Sasakian homogeneous structures on the generalized Heisenberg group $H(p,1)$”, Proc. Amer. Math. Soc., 105:1 (1989), 173–184 | MR | Zbl

[3] Binz E., Podc S., Geometry of Heisenberg groups, Amer. Math. Soc., 2008 | MR | Zbl

[4] Boyer C. P., The Sasakian geometry of the Heisenberg group, Albuquerque, 2009 | MR

[5] Tanno S., “The automorphism groups of almost contact Riemannian manifolds”, Tô hoku Math. J. (2), 21:1 (1969), 21–38 | DOI | MR | Zbl

[6] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy-7, Itogi nauki i tekhn. Ser. Sovremen. probl. matem. Fundament. napravleniya, 16, VINITI, M., 1987, 5–85

[7] Agrachev A., Barilari D., Boscain U., Introduction to Riemannian and sub-Riemannian geometry, SISSA, Italy, 2012

[8] Sachkov Yu. L., “Teoriya upravleniya na gruppakh Li”, Sovremen. matem. Fundament. napravleniya, 26, 2008, 5–59

[9] Agrachev A. A., “Nekotorye voprosy subrimanovoi geometrii”, UMN, 71:6 (2016), 3–36 | DOI | MR | Zbl

[10] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes Math., 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[11] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, “Pechatnyi Dom”, Odessa, 2013

[12] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure. I”, Tô hoku Math. J. (2), 12:3 (1960), 459–476 | DOI | MR | Zbl