Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 76-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of three-particle discrete Shrödinger operators $H_\mu(K)$, associated to a system of Hamiltonian of three identical particles (fermions) with pairwise two-particles interactions on neighboring junctions on $d$-dimensional lattice $\mathbb{Z}^{d}$. The location and structure of the essential spectrum of the operator $H_\mu(K)$ is described for all three-particles quasi-momentum $K\in \mathbb{T}^d$ and interaction energy $\mu>0$.
Keywords: spectral properties, three-particle Shrödinger operators, Hamiltonian of systems of three fermions, essential spectrum, eigenvalue.
@article{IVM_2017_9_a7,
     author = {A. M. Khalkhuzhaev},
     title = {Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--88},
     publisher = {mathdoc},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a7/}
}
TY  - JOUR
AU  - A. M. Khalkhuzhaev
TI  - Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 76
EP  - 88
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_9_a7/
LA  - ru
ID  - IVM_2017_9_a7
ER  - 
%0 Journal Article
%A A. M. Khalkhuzhaev
%T Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 76-88
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_9_a7/
%G ru
%F IVM_2017_9_a7
A. M. Khalkhuzhaev. Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 76-88. http://geodesic.mathdoc.fr/item/IVM_2017_9_a7/

[1] Graf G.M., Schenker D., “$2$-magnon scattering in the Heisenberg model”, Ann. Inst. H. Poincaré Phys. Theor., 67:1 (1997), 91–107 | MR | Zbl

[2] Mattis D.C., “The few-body problem on lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[3] Mogilner A.I., “The problem of few quasi-particles in solid state physics”, Applications of self-adjoint extensions in quantum physics, Lect. Notes Phys., 324, eds. P. Exner, P. Seba, Springer-Verlag, Berlin, 1998 | MR

[4] Malyshev V.A., Minlos R.A., “Klastepnye opepatopy”, Tp. semin. im. I.G. Petpovskogo, 9, 1983, 63–80 | Zbl

[5] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982

[6] Albeverio S., Lakaev S.N., Muminov Z.I., “On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices”, Math. Nachr., 280:7 (2007), 699–716 | DOI | MR | Zbl

[7] Lakaev S.N., Khalkhuzhaev A.M., “O spektre dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 155:2 (2008), 287–300 | DOI | Zbl

[8] Lakaev S.N., Khalkhuzhaev A.M., “O chisle sobstvennykh znachenii dvukhchastichnogo diskretnogo operatora Shredingera”, TMF, 158:2 (2009), 263–276 | DOI | Zbl