Investigation of solutions to one family of mathematical models of living systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 54-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of integral equations used as models of some living systems. We establish a reduction of the integral equation to the equivalent Cauchy problem for a non-autonomous differential equation with a point or distributed delay dependent on a choice of a elements survival function. We also investigate questions of existence, uniqueness, nonnegativity and extendibility of solutions. We describe all stationary solutions and obtain sufficient conditions of their asymptotic stability. We have found sufficient conditions of existence of a limit of solutions on infinity and present an example of a research of equations in which the production speed of elements of living systems is described by means of unimodal function (Hill function).
Keywords: nonlinear integral equation of convolution type, differential equation with delay, differential equation with distributed delay, asymptotic stability of solutions of nonlinear integral equation, limit of solutions of nonlinear integral equation, mathematical model of living system, survival function, unimodal function, Hill function.
@article{IVM_2017_9_a5,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {Investigation of solutions to one family of mathematical models of living systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--68},
     publisher = {mathdoc},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - Investigation of solutions to one family of mathematical models of living systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 54
EP  - 68
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/
LA  - ru
ID  - IVM_2017_9_a5
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T Investigation of solutions to one family of mathematical models of living systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 54-68
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/
%G ru
%F IVM_2017_9_a5
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Investigation of solutions to one family of mathematical models of living systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 54-68. http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/

[1] Gurtin M.E., MacCamy R.C., “Non-linear age-dependent population dynamics”, Arch. Rat. Mech. Anal., 54:3 (1974), 281–300 | DOI | MR | Zbl

[2] Swick S.E., “On nonlinear age-dependent model of single species population dynamics”, SIAM J. Appl. Math., 32:2 (1977), 484–498 | DOI | MR | Zbl

[3] Cooke K., York J., “Some equations modelling growth processes and gonorhea epidemics”, Math. Biosc., 16:1 (1973), 75–101 | DOI | MR | Zbl

[4] Busenberg S., Cooke K., “The effect of integral conditions in certain equations modelling epidemics and population growth”, J. Math. Biol., 10:1 (1980), 13–32 | DOI | MR | Zbl

[5] Hethcote H.W., Stech H.W., van den Driessche P., “Stability analisys for models of diseases without immunity”, J. Math. Biol., 13:2 (1981), 185–198 | DOI | MR | Zbl

[6] Belair J., “Lifespans in population models: using time delay”, Lect. Notes in Biomath., 92, Springer, New York, 1991, 16–27 | DOI | MR

[7] Aiello W.G., Freedman H.I., Wu J., “Analysis of a model representing stage–structured population growth with state–dependent time delay”, SIAM J. Appl. Math., 52:3 (1992), 855–869 | DOI | MR | Zbl

[8] Bocharov G., Hadeler K.P., “Structured population models, conservation laws, and delay equations”, J. Diff. Equat., 168:1 (2000), 212–237 | DOI | MR | Zbl

[9] Pertsev N.V., “Dvustoronnie otsenki reshenii integrodifferentsialnogo uravneniya, opisyvayuschego protsess krovetvoreniya”, Izv. vuzov. Matem., 2001, no. 6, 58–62

[10] Beretta E., Hara T., Ma W., Takeuchi Y., “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlin. Anal., 47:6 (2001), 4107–4115 | DOI | MR | Zbl

[11] Pertsev N.V., Pichugina A.N., Pichugin B.Yu., “Povedenie reshenii dissipativnoi integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matem., 6:2(14) (2003), 95–106

[12] Jin Z., Zhien M., Maoam H., “Global stability of an SIRS epidemic model with delays”, Acta Math. Scien., 26:2 (2006), 291–306 | DOI | MR | Zbl

[13] Malygina V.V., Mulyukov M.V., Pertsev N.V., “O lokalnoi ustoichivosti odnoi modeli dinamiki populyatsii s posledeistviem”, Sib. elektr. matem. izv., 11 (2014), 951–957 | Zbl

[14] Fan G., Thieme H.R., Zhu H., “Delay differential systems for tick population dynamis”, J. Math. Biol., 71:5 (2015), 1017–1048 | DOI | MR | Zbl

[15] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969

[16] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959

[17] Elsgolts L.E., Norkin S.B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[18] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981

[19] Obolenskii A.Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukr. matem. zhurn., 35:5 (1983), 574–579 | Zbl

[20] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyut. issledov., M., 2002

[21] Pertsev N.V., “Ob ogranichennykh resheniyakh odnogo klassa sistem integralnykh uravnenii, voznikayuschikh v modelyakh biologicheskikh protsessov”, Differents. uravneniya, 35:6 (1999), 831–836 | Zbl

[22] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovykh prostranstvakh, Nauka, M., 1970