Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_9_a5, author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina}, title = {Investigation of solutions to one family of mathematical models of living systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {54--68}, publisher = {mathdoc}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/} }
TY - JOUR AU - N. V. Pertsev AU - B. Yu. Pichugin AU - A. N. Pichugina TI - Investigation of solutions to one family of mathematical models of living systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 54 EP - 68 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/ LA - ru ID - IVM_2017_9_a5 ER -
%0 Journal Article %A N. V. Pertsev %A B. Yu. Pichugin %A A. N. Pichugina %T Investigation of solutions to one family of mathematical models of living systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 54-68 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/ %G ru %F IVM_2017_9_a5
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Investigation of solutions to one family of mathematical models of living systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2017), pp. 54-68. http://geodesic.mathdoc.fr/item/IVM_2017_9_a5/
[1] Gurtin M.E., MacCamy R.C., “Non-linear age-dependent population dynamics”, Arch. Rat. Mech. Anal., 54:3 (1974), 281–300 | DOI | MR | Zbl
[2] Swick S.E., “On nonlinear age-dependent model of single species population dynamics”, SIAM J. Appl. Math., 32:2 (1977), 484–498 | DOI | MR | Zbl
[3] Cooke K., York J., “Some equations modelling growth processes and gonorhea epidemics”, Math. Biosc., 16:1 (1973), 75–101 | DOI | MR | Zbl
[4] Busenberg S., Cooke K., “The effect of integral conditions in certain equations modelling epidemics and population growth”, J. Math. Biol., 10:1 (1980), 13–32 | DOI | MR | Zbl
[5] Hethcote H.W., Stech H.W., van den Driessche P., “Stability analisys for models of diseases without immunity”, J. Math. Biol., 13:2 (1981), 185–198 | DOI | MR | Zbl
[6] Belair J., “Lifespans in population models: using time delay”, Lect. Notes in Biomath., 92, Springer, New York, 1991, 16–27 | DOI | MR
[7] Aiello W.G., Freedman H.I., Wu J., “Analysis of a model representing stage–structured population growth with state–dependent time delay”, SIAM J. Appl. Math., 52:3 (1992), 855–869 | DOI | MR | Zbl
[8] Bocharov G., Hadeler K.P., “Structured population models, conservation laws, and delay equations”, J. Diff. Equat., 168:1 (2000), 212–237 | DOI | MR | Zbl
[9] Pertsev N.V., “Dvustoronnie otsenki reshenii integrodifferentsialnogo uravneniya, opisyvayuschego protsess krovetvoreniya”, Izv. vuzov. Matem., 2001, no. 6, 58–62
[10] Beretta E., Hara T., Ma W., Takeuchi Y., “Global asymptotic stability of an SIR epidemic model with distributed time delay”, Nonlin. Anal., 47:6 (2001), 4107–4115 | DOI | MR | Zbl
[11] Pertsev N.V., Pichugina A.N., Pichugin B.Yu., “Povedenie reshenii dissipativnoi integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matem., 6:2(14) (2003), 95–106
[12] Jin Z., Zhien M., Maoam H., “Global stability of an SIRS epidemic model with delays”, Acta Math. Scien., 26:2 (2006), 291–306 | DOI | MR | Zbl
[13] Malygina V.V., Mulyukov M.V., Pertsev N.V., “O lokalnoi ustoichivosti odnoi modeli dinamiki populyatsii s posledeistviem”, Sib. elektr. matem. izv., 11 (2014), 951–957 | Zbl
[14] Fan G., Thieme H.R., Zhu H., “Delay differential systems for tick population dynamis”, J. Math. Biol., 71:5 (2015), 1017–1048 | DOI | MR | Zbl
[15] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969
[16] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959
[17] Elsgolts L.E., Norkin S.B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971
[18] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981
[19] Obolenskii A.Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukr. matem. zhurn., 35:5 (1983), 574–579 | Zbl
[20] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyut. issledov., M., 2002
[21] Pertsev N.V., “Ob ogranichennykh resheniyakh odnogo klassa sistem integralnykh uravnenii, voznikayuschikh v modelyakh biologicheskikh protsessov”, Differents. uravneniya, 35:6 (1999), 831–836 | Zbl
[22] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovykh prostranstvakh, Nauka, M., 1970