Uniformization of one-parametric families of complex tori
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 42-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an approximate method to find an elliptic function uniformizing compact Riemann surface of genus 1 which is given as a ramified covering of the Riemann sphere. The method is based on including the surface into a smooth one-parametric family. We deduce a system of ordinary differential equations for critical points of elliptic functions uniformizing surfaces of the family.
Keywords: Riemann surface, complex torus, ramified covering, elliptic function, uniformization, one-parametric families of meromorphic functions.
@article{IVM_2017_8_a3,
     author = {S. R. Nasyrov},
     title = {Uniformization of one-parametric families of complex tori},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--52},
     publisher = {mathdoc},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a3/}
}
TY  - JOUR
AU  - S. R. Nasyrov
TI  - Uniformization of one-parametric families of complex tori
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 42
EP  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_8_a3/
LA  - ru
ID  - IVM_2017_8_a3
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%T Uniformization of one-parametric families of complex tori
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 42-52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_8_a3/
%G ru
%F IVM_2017_8_a3
S. R. Nasyrov. Uniformization of one-parametric families of complex tori. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 42-52. http://geodesic.mathdoc.fr/item/IVM_2017_8_a3/

[1] Aleksandrov I. A., Parametricheskie prodolzheniya v teorii odnolistnykh funktsii, Nauka, M., 1976 | MR

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Gutlyanskii V. Ya., Ryazanov V. I., Geometricheskaya i topologicheskaya teoriya funktsii i otobrazhenii, Zadachi i metody: matematika, mekhanika, kibernetika, 5, Nauk. dumka, Kiev, 2011

[4] de Branges L., “A proof of the Bieberbach conjecture”, Acta Mathematica, 154:1 (1985), 137–152 | DOI | MR | Zbl

[5] Goryainov V. V., “Polugruppy analiticheskikh funktsii v analize i prilozheniyakh”, UMN, 67:6(408) (2012), 5–52 | DOI | MR | Zbl

[6] Bauer M., Bernard D., Kytola K., “Multiple Schramm–Loewner evolutions and statistical mechanics martingales”, J. Stat. Phys., 120:5–6 (2005), 1125–1163 | DOI | MR | Zbl

[7] Graham K., “On multiple Schramm–Loewner evolutions”, Journal of Statistical Mechanics: Theory and Experiment, 2007, no. 3 | MR

[8] Dubedat J., “Commutation relations for Schramm–Loewner evolutions”, Comm. Pure Appl. Math., 60:12 (2007), 1792–1847 | DOI | MR | Zbl

[9] Nasyrov S. R., “Nakhozhdenie polinoma, uniformiziruyuschego zadannuyu kompaktnuyu rimanovu poverkhnost”, Matem. zametki, 91:4 (2012), 597–607 | DOI | Zbl

[10] Nasyrov S. R., “One-parametric families of elliptic functions uniformizing complex tori”, Kompleksnyi analiz i ego prilozheniya, Materialy VII Petrozavodskoi mezhd. konf., Izd-vo Petrozavodsk. un-ta, Petrozavodsk, 2014, 78–79

[11] Nasyrov S. R., “Odnoparametricheskie semeistva mnogolistnykh funktsii i rimanovykh poverkhnostei”, Sovremennye metody teorii funktsii i smezhnye problemy, Mater. mezhdunar. konf. “Voronezhskaya zimnyaya matem. shkola”, Izd. dom VGU, Voronezh, 2015, 83–85

[12] Hurwitz A., “Über Riemannsche Flächen mit gegeben Verzweigungpunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[13] Hurwitz A., “Über die Anzahl der Riemannsche Flächen mit gegeben Verzweigungpunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl

[14] Weyl H., “Über das Hurwitzsche Problem der Bestimmung der Anzahl Riemannscher Flächen von gegebener Verzweigungsart”, Comment. Math. Helv., 3 (1931), 103–113 | DOI | MR

[15] Lloyd E., “Riemann surface transformation groups”, J. Combinatorial Theory (A), 13 (1972), 17–27 | DOI | MR | Zbl

[16] Mednykh A. D., “Neekvivalentnye nakrytiya rimanovykh poverkhnostei s zadannym tipom vetvleniya”, Sib. matem. zhurn., 25:4 (1984), 120–142 | MR | Zbl

[17] Mednykh A. D., “Novyi metod podscheta chisla nakrytii nad mnogoobraziem s konechno porozhdennoi fundamentalnoi gruppoi”, Dokl. RAN, 409:2 (2006), 158–162 | MR | Zbl

[18] Nasyrov S. R., Geometricheskie problemy teorii razvetvlennykh nakrytii rimanovykh poverkhostei, Magarif, Kazan, 2008

[19] Lando S. K., “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3(345) (2002), 29–98 | DOI | MR | Zbl

[20] Lando S. K., Zvonkin A. K., Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[21] Gurvits A., Kurant R., Teoriya funktsii, Mir, M., 1968

[22] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, 2-e izd., Fizmatlit, M., 1970