Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_8_a0, author = {A. Yu. Aleksandrov and E. B. Aleksandrova and A. V. Platonov and Y. Chen}, title = {Estimate of the attraction domain for a class of nonlinear switched systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--16}, publisher = {mathdoc}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/} }
TY - JOUR AU - A. Yu. Aleksandrov AU - E. B. Aleksandrova AU - A. V. Platonov AU - Y. Chen TI - Estimate of the attraction domain for a class of nonlinear switched systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 3 EP - 16 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/ LA - ru ID - IVM_2017_8_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A E. B. Aleksandrova %A A. V. Platonov %A Y. Chen %T Estimate of the attraction domain for a class of nonlinear switched systems %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 3-16 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/ %G ru %F IVM_2017_8_a0
A. Yu. Aleksandrov; E. B. Aleksandrova; A. V. Platonov; Y. Chen. Estimate of the attraction domain for a class of nonlinear switched systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/
[1] Vasilev S. N., Kosov A. A., “Analiz dinamiki gibridnykh sistem s pomoschyu obschikh funktsii Lyapunova i mnozhestvennykh gomomorfizmov”, Avtomatika i telemekhanika, 2011, no. 6, 27–47
[2] Bacciotti A., Mazzi L., “Remarks on dwell time solutions and stability of families of nonlinear vector fields”, IEEE Trans. Automat. Control, 54:8 (2009), 1886–1892 | DOI | MR
[3] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl
[4] Zhang J., Han Zh., Huang J., “Global asymptotic stabilisation for switched planar systems”, Int. J. of Systems Sci., 46:5 (2015), 908–918 | DOI | MR | Zbl
[5] DeCarlo R., Branicky M., Pettersson S., Lennartson B., “Perspectives and results on the stability and stabilisability of hybrid systems”, Proc. IEEE, 88 (2000), 1069–1082 | DOI
[6] Liberzon D., Switching in systems and control, Birkhauser, Boston, MA, 2003 | MR | Zbl
[7] Branicky M. S., “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Automat. Control, 43:4 (1998), 475–482 | DOI | MR | Zbl
[8] Aleksandrov A. Yu., Aleksandrova E. B., “Asymptotic stability conditions for a class of hybrid mechanical systems with switched nonlinear positional forces”, Nonlinear Dyn., 83:4 (2016), 2427–2434 | DOI | MR | Zbl
[9] Aleksandrov A. Yu., Aleksandrova E. B., Lakrisenko P. A., Platonov A. V., Chen Y., “Asymptotic stability conditions for some classes of mechanical systems with switched nonlinear force fields”, Nonlinear Dyn. and Syst. Theory, 15:2 (2015), 127–140 | MR | Zbl
[10] Aleksandrov A. Yu., Aleksandrova E. B., Zhabko A. P., “Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems”, Circuits, Syst. and Signal Proc., 35 (2016), 3531–3554 | DOI | MR | Zbl
[11] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973
[12] Zubov V. I., Dinamika upravlyaemykh sistem, Izd-vo S.-Peterb. un-ta, S.-Peterburg, 2004 | MR
[13] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Syst. and Control Lett., 19:6 (1992), 467–473 | DOI | MR | Zbl
[14] Bernuau E., Perruquetti W., Efimov D., Moulay E., “Finite time output stabilization of the double integrator”, Proc. 51st IEEE Conference on Decision and Control (Hawaii, USA), 2012, 5906–5911
[15] Bhat S. P., Bernstein D. S., “Geometric homogeneity with applications to finite-time stability”, Math. of Control, Signals and Syst., 17 (2005), 101–127 | DOI | MR | Zbl