Estimate of the attraction domain for a class of nonlinear switched systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a hybrid dynamical system composed of a family of subsystems of nonlinear differential equations and a switching law which determines the order of their operation. It is supposed that the subsystems are homogeneous with homogeneity degrees less than one, and the zero solutions of all the subsystems are asymptotically stable. Based on the Lyapunov direct method and the differential inequalities method, we derermine classes of switching laws providing prescribed estimates of attraction domains for the zero solutions of the corresponding hybrid systems. The developed approaches are used for the stabilization of a double integrator.
Keywords: switched systems, homogeneous function, the Lyapunov direct method, differential inequalities.
Mots-clés : attraction domain
@article{IVM_2017_8_a0,
     author = {A. Yu. Aleksandrov and E. B. Aleksandrova and A. V. Platonov and Y. Chen},
     title = {Estimate of the attraction domain for a class of nonlinear switched systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - E. B. Aleksandrova
AU  - A. V. Platonov
AU  - Y. Chen
TI  - Estimate of the attraction domain for a class of nonlinear switched systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 3
EP  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/
LA  - ru
ID  - IVM_2017_8_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A E. B. Aleksandrova
%A A. V. Platonov
%A Y. Chen
%T Estimate of the attraction domain for a class of nonlinear switched systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 3-16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/
%G ru
%F IVM_2017_8_a0
A. Yu. Aleksandrov; E. B. Aleksandrova; A. V. Platonov; Y. Chen. Estimate of the attraction domain for a class of nonlinear switched systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2017_8_a0/

[1] Vasilev S. N., Kosov A. A., “Analiz dinamiki gibridnykh sistem s pomoschyu obschikh funktsii Lyapunova i mnozhestvennykh gomomorfizmov”, Avtomatika i telemekhanika, 2011, no. 6, 27–47

[2] Bacciotti A., Mazzi L., “Remarks on dwell time solutions and stability of families of nonlinear vector fields”, IEEE Trans. Automat. Control, 54:8 (2009), 1886–1892 | DOI | MR

[3] Shorten R., Wirth F., Mason O., Wulf K., King C., “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl

[4] Zhang J., Han Zh., Huang J., “Global asymptotic stabilisation for switched planar systems”, Int. J. of Systems Sci., 46:5 (2015), 908–918 | DOI | MR | Zbl

[5] DeCarlo R., Branicky M., Pettersson S., Lennartson B., “Perspectives and results on the stability and stabilisability of hybrid systems”, Proc. IEEE, 88 (2000), 1069–1082 | DOI

[6] Liberzon D., Switching in systems and control, Birkhauser, Boston, MA, 2003 | MR | Zbl

[7] Branicky M. S., “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems”, IEEE Trans. Automat. Control, 43:4 (1998), 475–482 | DOI | MR | Zbl

[8] Aleksandrov A. Yu., Aleksandrova E. B., “Asymptotic stability conditions for a class of hybrid mechanical systems with switched nonlinear positional forces”, Nonlinear Dyn., 83:4 (2016), 2427–2434 | DOI | MR | Zbl

[9] Aleksandrov A. Yu., Aleksandrova E. B., Lakrisenko P. A., Platonov A. V., Chen Y., “Asymptotic stability conditions for some classes of mechanical systems with switched nonlinear force fields”, Nonlinear Dyn. and Syst. Theory, 15:2 (2015), 127–140 | MR | Zbl

[10] Aleksandrov A. Yu., Aleksandrova E. B., Zhabko A. P., “Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems”, Circuits, Syst. and Signal Proc., 35 (2016), 3531–3554 | DOI | MR | Zbl

[11] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973

[12] Zubov V. I., Dinamika upravlyaemykh sistem, Izd-vo S.-Peterb. un-ta, S.-Peterburg, 2004 | MR

[13] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Syst. and Control Lett., 19:6 (1992), 467–473 | DOI | MR | Zbl

[14] Bernuau E., Perruquetti W., Efimov D., Moulay E., “Finite time output stabilization of the double integrator”, Proc. 51st IEEE Conference on Decision and Control (Hawaii, USA), 2012, 5906–5911

[15] Bhat S. P., Bernstein D. S., “Geometric homogeneity with applications to finite-time stability”, Math. of Control, Signals and Syst., 17 (2005), 101–127 | DOI | MR | Zbl