Univalent conformal mappings by generalized Christoffel--Schwartz integral onto polygonal domains with countable set of vertices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a formula for the conformal mapping of the upper half-plane onto a polygonal domain. This structural formula generalizes the Schwartz–Christoffel equation and is written with the use of partial solution to the Hilbert boundary-value problem with a countable set of points of discontinuity of the coefficients and with turbulence at infinity of logarithmic type. We also prove closedness and existence of univalent mappings among given ones.
Keywords: Schwartz–Christoffel equation, conformal mapping, Hilbert boundary-value problem
Mots-clés : univalence.
@article{IVM_2017_7_a8,
     author = {E. N. Khasanova},
     title = {Univalent conformal mappings by generalized {Christoffel--Schwartz} integral onto polygonal domains with countable set of vertices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--83},
     publisher = {mathdoc},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a8/}
}
TY  - JOUR
AU  - E. N. Khasanova
TI  - Univalent conformal mappings by generalized Christoffel--Schwartz integral onto polygonal domains with countable set of vertices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 74
EP  - 83
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_7_a8/
LA  - ru
ID  - IVM_2017_7_a8
ER  - 
%0 Journal Article
%A E. N. Khasanova
%T Univalent conformal mappings by generalized Christoffel--Schwartz integral onto polygonal domains with countable set of vertices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 74-83
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_7_a8/
%G ru
%F IVM_2017_7_a8
E. N. Khasanova. Univalent conformal mappings by generalized Christoffel--Schwartz integral onto polygonal domains with countable set of vertices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 74-83. http://geodesic.mathdoc.fr/item/IVM_2017_7_a8/

[1] Aleksandrov I. A., “Konformnye otobrazheniya poluploskosti na oblasti s simmetriei perenosa”, Izv. vuzov. Matem., 1999, no. 6, 15–18

[2] Kolesnikov I. A., Kopaneva L. S., “Konformnoe otobrazhenie na schetnougolnik s dvoinoi simmetriei”, Izv. vuzov. Matem., 2014, no. 12, 37–47

[3] Riera G., Carrasco H., Preiss R., “The Schwarz–Christoffel conformal mapping for “polygons” with infinitely many sides”, Internat. J. Math. Math. Sci., 1 (2008), 350326, 20 pp. | MR

[4] Floryan J. M., Zemach C., “Schwarz–Cristoffel methods for conformal mapping of regions with a periodic boundary”, J. Comput. Appl. Math., 46:1–2 (1993), 77–102 | DOI | MR | Zbl

[5] Salimov R. B., Shabalin P. L., “Otobrazhenie poluploskosti na mnogougolnik s beskonechnym chislom vershin”, Izv. vuzov. Matem., 2009, no. 10, 76–80

[6] Salimov R. B., Shabalin P. L., “Obratnaya zadacha M. A. Lavrenteva ob otobrazhenii poluploskosti na mnogougolnik v sluchae beskonechnogo chisla vershin”, Izv. Saratovsk. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 10:1 (2010), 23–31

[7] Salimov R. B., Shabalin P. L., “Odno obobschenie formuly Shvartsa–Kristoffelya”, Sib. zhurn. industr. matem., 13:4 (2010), 109–117 | MR | Zbl

[8] Karabasheva E. N., Shabalin P. L., “Univalence of mappings from half-plane to a polygonal domains wiht infinite sets of vertices”, Lobachevskii J. Math., 36:2 (2015), 144–153 | DOI | MR | Zbl

[9] Salimov R. B., Shabalin P. L., “Odnorodnaya zadacha Gilberta so schetnym mnozhestvom tochek razryva koeffitsientov i logarifmicheskoi osobennostyu indeksa”, Izv. vuzov. Matem., 2013, no. 12, 83–88

[10] Yurov P. G., “Asimptoticheskie otsenki tselykh funktsii, zadannykh kanonicheskimi proizvedeniyami”, Matem. zametki, 10:6 (1971), 641–648 | Zbl

[11] Melnik I. M., “Isklyuchitelnyi sluchai kraevoi zadachi Rimana”, Tr. Tbilissk. matem. in-ta, XXIV, 1957, 149–161

[12] Aksent'ev L. A., Shabalin P. L., “Sufficient conditions for univalence and quasiconformal extendibility of analytic functions”, Handbook of Complex Analysis, v. 1, Geometric Function Theory, ed. R. Kühnau, Martin-Luther-Universität, Halle, Germany, 2002, 169–206 | MR