Hypercomplex numbers in some geometries of two sets. I
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The most important problem in the theory of phenomenologically symmetric geometries of two sets is classification of these geometries. In this work we find metric functions of these new geometries by metric functions of some known phenomenologically symmetric geometries of two sets (PS GTS) with the help of complexification by associative hypercomplex numbers. We also find equations of motion groups of these geometries and phenomenological symmetry of these geometries, i. e., functional relationship between metric functions is specified for definite finite number of arbitrary points. In particular, by single-component metric function of PS GTS of $(2,2)$, $(3,2)$, $(3,3)$ ranks we define $(n+1)$-component metric functions of the same ranks. We find finite equations of motion group and equation expressing their phenomenological symmetry.
Keywords: geometry of two sets, phenomenological symmetry, group symmetry, hyper-complex numbers.
@article{IVM_2017_7_a2,
     author = {G. G. Mikhailichenko and V. A. Kyrov},
     title = {Hypercomplex numbers in some geometries of two sets. {I}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--29},
     publisher = {mathdoc},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a2/}
}
TY  - JOUR
AU  - G. G. Mikhailichenko
AU  - V. A. Kyrov
TI  - Hypercomplex numbers in some geometries of two sets. I
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 19
EP  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_7_a2/
LA  - ru
ID  - IVM_2017_7_a2
ER  - 
%0 Journal Article
%A G. G. Mikhailichenko
%A V. A. Kyrov
%T Hypercomplex numbers in some geometries of two sets. I
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 19-29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_7_a2/
%G ru
%F IVM_2017_7_a2
G. G. Mikhailichenko; V. A. Kyrov. Hypercomplex numbers in some geometries of two sets. I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 19-29. http://geodesic.mathdoc.fr/item/IVM_2017_7_a2/

[1] Mikhailichenko G. G., Muradov R. M., Fizicheskie struktury kak geometrii dvukh mnozhestv, GAGU, Gorno-Altaisk, 2008

[2] Mikhailichenko G. G., “Ob odnoi zadache v teorii fizicheskikh struktur”, Sib. matem. zhurn., 18:6 (1977), 1342–1355 | MR | Zbl

[3] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, DAN SSSR, 206:5 (1972), 1056–1058 | Zbl

[4] Kantor I. L., Solodovnikov A. S., Giperkompleksnye chisla, Nauka, M., 1973

[5] Mikhailichenko G. G., Muradov R. M., “Giperkompleksnye chisla v teorii fizicheskikh struktur”, Izv. vuzov. Matem., 2008, no. 10, 25–30 | MR | Zbl

[6] Kostrikin A. I., Vvedenie v algebru, Nauka, M., 1977 | MR

[7] Mikhailichenko G. G., “Fenomenologicheskaya i gruppovaya simmetriya v geometrii dvukh mnozhestv (teorii fizicheskikh struktur)”, DAN SSSR, 24:1 (1985), 39–41 | MR

[8] Mikhailichenko G. G., “Gruppovye svoistva fizicheskikh struktur”, Sib. matem. zhurn., 31:3 (1990); Деп. ВИНИТИ, No 1589–В89, 1989

[9] Kulakov Yu. I., Vladimirov Yu. S., Karnaukhov A. V., Vvedenie v teoriyu fizicheskikh struktur, Arkhimed, M., 1992

[10] Vladimirov Yu. S., Relyatsionnaya teoriya prostranstva-vremeni, v. 2, Teoriya fizicheskikh vzaimodeistvii, Izd-vo MGU, M., 1999

[11] Kyrov V. A., “Affinnaya geometriya kak fizicheskaya struktura”, Zhurn. sib. fed. un-ta. Matem. i fizika, 1:4 (2008), 460–464