On maximal quantity of particles of one color in analogs of multicolor urn schemes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 94-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with analogs of multicolor urn schemes such that the number of particles is not more than a given number. We introduce conditions which provide the convergence of random variables which is the maximal number of taken particles of a same color to a random variable that has values zero and one. We prove this convergence in the case when a number of taken particles is not more than a fixed number and number of colors converges to infinity. We also consder the case when the number of taken particles converges to infinity.
Keywords: allocation of particles to cells, urn scheme, limit theorem.
Mots-clés : Pousson random variable, binomial random variable
@article{IVM_2017_7_a10,
     author = {A. N. Chuprunov and G. Alsaied and M. Alkhuzani},
     title = {On maximal quantity of particles of one color in analogs of multicolor urn schemes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--100},
     publisher = {mathdoc},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2017_7_a10/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - G. Alsaied
AU  - M. Alkhuzani
TI  - On maximal quantity of particles of one color in analogs of multicolor urn schemes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2017
SP  - 94
EP  - 100
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2017_7_a10/
LA  - ru
ID  - IVM_2017_7_a10
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A G. Alsaied
%A M. Alkhuzani
%T On maximal quantity of particles of one color in analogs of multicolor urn schemes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2017
%P 94-100
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2017_7_a10/
%G ru
%F IVM_2017_7_a10
A. N. Chuprunov; G. Alsaied; M. Alkhuzani. On maximal quantity of particles of one color in analogs of multicolor urn schemes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2017), pp. 94-100. http://geodesic.mathdoc.fr/item/IVM_2017_7_a10/

[1] Kolchin V. F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Litovsk. matem. sb., 8:1 (1968), 53–63

[2] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000

[3] Timashev A. N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011

[4] Timashev A. N., Obobschennaya skhema razmescheniya v zadachakh veroyatnostnoi kombinatoriki, Akademiya, M., 2011

[5] Pavlov Yu. L., Sluchainye lesa, Karelsk. nauchn. tsentr RAN, Petrozavodsk, 1996

[6] Chuprunov A. N., Fazekash I., “Analog obobschennoi skhemy razmescheniya. Predelnye teoremy dlya chisla yacheek zadannogo ob'ema”, Diskretn. matem., 24:1 (2012), 140–158 | DOI

[7] Chuprunov A. N., Fazekash I., “Analog obobschennoi skhemy razmescheniya. Predelnye teoremy dlya maksimalnogo ob'ema yacheiki”, Diskretn. matem., 24:3 (2012), 122–129 | DOI | Zbl

[8] Khvorostyanskaya E. V., Pavlov Yu. L., “Limit distributions of the maximum filling of cells in one allocation scheme”, Europian Researcher, 76:6–1 (2014), 1019–1027

[9] Borovkov A. A., Teoriya veroyatnostei, Librokom, M., 2009