Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2017_6_a9, author = {A. V. Chernov}, title = {On total preservation of solvability for a controlled {Hammerstein} type equation with non-isotone and non-majorized operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {83--94}, publisher = {mathdoc}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2017_6_a9/} }
TY - JOUR AU - A. V. Chernov TI - On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2017 SP - 83 EP - 94 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2017_6_a9/ LA - ru ID - IVM_2017_6_a9 ER -
%0 Journal Article %A A. V. Chernov %T On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2017 %P 83-94 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2017_6_a9/ %G ru %F IVM_2017_6_a9
A. V. Chernov. On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2017), pp. 83-94. http://geodesic.mathdoc.fr/item/IVM_2017_6_a9/
[1] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matem., 2011, no. 3, 95–107
[2] Kalantarov V. K., Ladyzhenskaya O. A., “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zap. nauchn. semin. LOMI, 69, 1977, 77–102 | Zbl
[3] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl
[4] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR
[5] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999
[6] Chernov A. V., “O gladkikh konechnomernykh approksimatsiyakh raspredelennykh optimizatsionnykh zadach s pomoschyu diskretizatsii upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 53:12 (2013), 2029–2043 | DOI | MR | Zbl
[7] Chernov A. V., “O primenimosti tekhniki parametrizatsii upravleniya k resheniyu raspredelennykh zadach optimizatsii”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 24:1 (2014), 102–117
[8] Sergeev Ya. D., Kvasov D. E., Diagonalnye metody globalnoi optimizatsii, Fizmatlit, M., 2008
[9] Chernov A. V., “O kusochno postoyannoi approksimatsii v raspredelennykh zadachakh optimizatsii”, Tr. IMM UrO RAN, 21, no. 1, 2015, 305–321
[10] Chernov A. V., “O dostatochnykh usloviyakh upravlyaemosti nelineinykh raspredelennykh sistem”, Zhurn. vychisl. matem. i matem. fiz., 52:8 (2012), 1400–1414 | MR | Zbl
[11] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, Vyssh. shkola, M., 1998
[12] Chernov A. V., “O suschestvovanii ravnovesiya po Neshu v differentsialnoi igre, svyazannoi s ellipticheskimi uravneniyami: monotonnyi sluchai”, Matem. teoriya igr i ee prilozh., 7:3 (2015), 48–78
[13] Casas E., “Boundary control of semilinear elliptic equations with pointwise state constraints”, SIAM J. Control and Optim., 31 (1993), 993–1006 | DOI | MR | Zbl
[14] Chernov A. V., “O volterrovom obobschenii metoda monotonizatsii dlya nelineinykh funktsionalno-operatornykh uravnenii”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 22:2 (2012), 84–99
[15] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[16] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[18] Karchevskii M. M., Pavlova M. F., Uravneniya matematicheskoi fiziki. Dopolnitelnye glavy, KGU, Kazan, 2012
[19] Vorobev A. Kh., Diffuzionnye zadachi v khimicheskoi kinetike, MGU, M., 2003
[20] Tröltzsch F., Optimal control of partial differential equations: theory, methods and applications, Graduate Stud. in Math., 112, American mathematical society, Providence, R.I., 2010 | DOI | MR | Zbl
[21] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989
[22] Chernov A. V., “O totalnom sokhranenii razreshimosti upravlyaemoi zadachi Dirikhle dlya ellipticheskogo uravneniya”, Dinamika sistem i protsessy upravleniya, Tr. Mezhdunarodn. konf., posvyasch. 90-letiyu so dnya rozhdeniya akad. N. N. Krasovskogo, IMM UrO RAN, Ekaterinburg, 2015, 359–366